Uso de la aplicación para el conteo de carbohidratos como herramienta de ayuda en el automanejo de la diabetes mellitus tipo 1: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i1.39270

Palabras clave:

Diabetes mellitus tipo 1; Carbohidratos de la dieta; Tecnología inalámbrica.

Resumen

Las aplicaciones para el conteo de carbohidratos (CCHO) aportan innumerables posibilidades para apoyar el tratamiento de personas con diabetes, ayudando con la terapia nutricional. Sin embargo, existe una escasa cantidad de estudios que evalúen el uso de esta tecnología, por lo que es de gran valor para identificar sus posibles beneficios. El presente estudio tuvo como objetivo verificar el uso de aplicaciones para CCHO en el automanejo del tratamiento de la diabetes mellitus tipo 1 (DM1). Se trata de una revisión sistemática, realizada mediante investigación en las plataformas MedLine, LILACS, Portal de Periódicos CAPES y EBSCOhost, con artículos publicados desde 2011 hasta 2021, buscados entre abril y junio de 2021, con descriptores “Diabetes Mellitus, Type 1” y “Recuento de carbohidratos” y “Aplicaciones móviles”. Se incluyeron estudios originales del tipo ensayo clínico aleatorizado y se excluyeron artículos no originales, estudios realizados con mujeres embarazadas y pacientes con diabetes mellitus tipo 2. Inicialmente se encontraron 67 artículos publicados completos, de los cuales, tras eliminar los duplicados, 60 Después de aplicar los criterios de elegibilidad, quedaron dos estudios, con una población entre 12 y 46 participantes y tiempo de intervención en torno a 90 y 104 días. Las aplicaciones utilizadas fueron iSpy y VoiceDiab. Entre los principales resultados destacan la mejora en la precisión de CCHO, la reducción de la hemoglobina glicosilada y un mayor tiempo en el objetivo. Por lo tanto, es posible concluir que el uso de aplicaciones para el CCHO se asocia con varios beneficios, debido a su estimación más precisa de las cantidades de CHO, corroborando con un mejor control glucémico.

Biografía del autor/a

Natália Souza Dantas, Universidade Federal do Ceará

Nutricionista (Universidade de Fortaleza). Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil. ORCID: https://orcid.org/0000-0002-5074-7618.

Natasha Vasconcelos Albuquerque, Universidade Federal do Ceará

Mestre em Saúde Pública (Universidade Federal do Ceará). Universidade Federal do Ceará, Doutorado em Saúde Pública. Fortaleza – Ceará, Brasil.

Tatiana Rebouças Moreira, Universidade Federal do Ceará

Mestre em Cuidados Clínicos em Enfermagem e Saúde (Universidade Estadual do Ceará). Universidade Estadual do Ceará, Doutorado em Cuidados Clínicos em Enfermagem e Saúde. Fortaleza – Ceará, Brasil.

Alane Nogueira Bezerra, Universidade Federal do Ceará

Mestre em Nutrição e Saúde (Universidade Estadual do Ceará). Universidade Federal do Ceará, Doutorado em Ciências Médicas. Fortaleza – Ceará, Brasil.

Lorena Taúsz Tavares Ramos, Universidade Federal do Ceará

Graduada em Nutrição (Universidade Estadual do Ceará). Universidade Federal do Ceará, Mestrado em Saúde Pública. Fortaleza – Ceará, Brasil.

Kamila Silva Camelo Rebouças, Universidade Federal do Ceará

Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil.

Renata Cristina Machado Mendes, Universidade Federal do Ceará

Mestre em Nutrição e Saúde (Universidade Estadual do Ceará). Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil.

Citas

Ahola, A. J., Mäkimattila, S., Saraheimo, M., Mikkilä, V., Forsblom, C., Freese, R., Groop, P. H., & FinnDIANE Study Group (2010). Many patients with Type 1 diabetes estimate their prandial insulin need inappropriately. Journal of Diabetes, 2(3), 194–202. https://doi.org/10.1111/j.1753-0407.2010.00086.x

Alfonsi, J. E., Choi, E. E. Y., Arshad, T., Sammott, S. S., Pais, V., Nguyen, C., Maguire, B. R., Stinson, J. N., & Palmert, M. R. (2020). Carbohydrate Counting App Using Image Recognition for Youth With Type 1 Diabetes: Pilot Randomized Control Trial. JMIR mHealth and uHealth, 8(10), e22074. https://doi.org/10.2196/22074

American Diabetes Association (2020). Standards of Medical Care in Diabetes-2020 Abridged for Primary Care Providers. Clinical diabetes: a publication of the American Diabetes Association, 38(1), 10–38. https://doi.org/10.2337/cd20-as01

Bayram, S., Kızıltan, G., & Akın, O. (2020). Effect of adherence to carbohydrate counting on metabolic control in children and adolescents with type 1 diabetes mellitus. Annals of pediatric endocrinology & metabolism, 25(3), 156–162. https://doi.org/10.6065/apem.1938192.096

Brasil. Ministério da Saúde. Secretaria de Ciência. (2012). Tecnologia e Insumos Estratégicos. Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados. http://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_metodologicas_elaboracao_sistematica.pdf

Chotwanvirat, P., Hnoohom, N., Rojroongwasinkul, N., & Kriengsinyos, W. (2021). Feasibility Study of an Automated Carbohydrate Estimation System Using Thai Food Images in Comparison With Estimation by Dietitians. Frontiers in nutrition, 8, 732449. https://doi.org/10.3389/fnut.2021.732449

Fu, S., Li, L., Deng, S., Zan, L., & Liu, Z. (2016). Effectiveness of advanced carbohydrate counting in type 1 diabetes mellitus: a systematic review and meta-analysis. Scientific reports, 6(1), 37067. https://doi.org/10.1038/srep37067

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds). (2022). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane. www.training.cochrane.org/handbook

International Diabetes Federation (2019). IDF diabetes atlas, 9th ed, Brussels International Diabetes Federation. http://www.idf.org/diabetesatlas

Joubert, M., Meyer, L., Doriot, A., Dreves, B., Jeandidier, N., & Reznik, Y. (2021). Prospective Independent Evaluation of the Carbohydrate Counting Accuracy of Two Smartphone Applications. Diabetes Therapy, 12(7), 1809–1820. https://doi.org/10.1007/s13300-021-01082-2

Kawamura, T., Takamura, C., Hirose, M., Hashimoto, T., Higashide, T., Kashihara, Y., Hashimura, K., & Shintaku, H. (2015). The factors affecting on estimation of carbohydrate content of meals in carbohydrate counting. Clinical Pediatric Endocrinology, 24(4), 153–165. https://doi.org/10.1297/cpe.24.153

Ladyzynski, P., Krzymien, J., Foltynski, P., Rachuta, M., & Bonalska, B. (2018). Accuracy of Automatic Carbohydrate, Protein, Fat and Calorie Counting Based on Voice Descriptions of Meals in People with Type 1 Diabetes. Nutrients, 10(4), 518. https://doi.org/10.3390/nu10040518

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2015). Principais itens para relatar Revisões Sistemáticas e Meta-análises: A recomendação PRISMA. Rev Epidemiol Serv Saúde, 24 (2), 335-342. 10.5123/S1679-49742015000200017

Ndahura, N. B., Munga, J., Kimiywe, J., & Mupere, E. (2021). Caregivers’ Nutrition Knowledge and Dietary Intake of Type 1 Diabetic Children Aged 3–14 Years in Uganda. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 127–137. https://doi.org/10.2147/dmso.s285979

Pańkowska, E., Ładyżyński, P., Foltyński, P., & Mazurczak, K. (2017). A Randomized Controlled Study of an Insulin Dosing Application That Uses Recognition and Meal Bolus Estimations. Journal of Diabetes Science and Technology, 11(1), 43–49. https://doi.org/10.1177/1932296816683409

Rhyner, D., Loher, H., Dehais, J., Anthimopoulos, M., Shevchik, S., Botwey, R. H., Duke, D., Stettler, C., Diem, P., & Mougiakakou, S. (2016). Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study. Journal of Medical Internet Research, 18(5), e101. https://doi.org/10.2196/jmir.5567

Rinker, J., Dickinson, J. K., Litchman, M. L., Williams, A. S., Kolb, L. E., Cox, C., & Lipman, R. D. (2018). The 2017 Diabetes Educator and the Diabetes Self-Management Education National Practice Survey. The Diabetes Educator, 44(3), 260–268. https://doi.org/10.1177/0145721718765446

Santos, C. M. da C., Pimenta, C. A. de M., & Nobre, M. R. C. (2007). A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Revista Latino-Americana de Enfermagem, 15 (3), 508-511. https://doi.org/10.1590/S0104-11692007000300023

Sociedade Brasileira de Diabetes (2019). Tratamento de diabetes mellitus tipo 1: manejo da hiperglicemia. In: SBD. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes – 2019-2020. São Paulo: Editora Clannad.

Sociedade Brasileira de Diabetes (2016). Manual de contagem de carboidratos para as pessoas com diabetes. Rio de Janeiro: Sociedade Brasileira de Diabetes.

Tascini, G., Berioli, M., Cerquiglini, L., Santi, E., Mancini, G., Rogari, F., Toni, G., & Esposito, S. (2018). Carbohydrate Counting in Children and Adolescents with Type 1 Diabetes. Nutrients, 10(1), 109. https://doi.org/10.3390/nu10010109

Rassi, N., Salles, J. E. N., & Silva, S. C. (2021). Insulinoterapia no Diabetes Melito Tipo 1. In: Vilar, L., Naves, L. A., Freitas, M. C., & Fleseriu, M. Endocrinologia Clínica. Rio de Janeiro: Guanabara Koogan.

World Health Organization (2016). Global report on diabetes. Who.int. https://doi.org/9789241565257

Publicado

01/01/2023

Cómo citar

DANTAS, N. S. .; ALBUQUERQUE, N. V. .; REBOUÇAS MOREIRA, T. .; BEZERRA, A. N. .; RAMOS, L. T. T. .; REBOUÇAS, K. S. C. .; MENDES, R. C. M. . Uso de la aplicación para el conteo de carbohidratos como herramienta de ayuda en el automanejo de la diabetes mellitus tipo 1: una revisión sistemática. Research, Society and Development, [S. l.], v. 12, n. 1, p. e3912139270, 2023. DOI: 10.33448/rsd-v12i1.39270. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39270. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias de la salud