In vitro production of parthenogenetic embryos from cryopreserved goat oocytes: literature review
DOI:
https://doi.org/10.33448/rsd-v12i2.40059Keywords:
Oocytes; PIV; Goat; Parthenogenesis.Abstract
The in vitro embryo production (PIV) is a biotechnique used, alternatively, to accelerate the production of genetically superior animals, with different stages: collection and in vitro maturation of oocytes, in vitro fertilization, in vitro culture from zygotes to the blastocyst stage. PIV, in conjunction with oocyte and embryo cryopreservation, may enable large-scale commercialization of embryos, transport of pathogen-free embryos, and easier and lower-cost germplasm commercial transactions. However, it is not effective due to several factors related to the evolution of the process. Studies aim to facilitate the use of oocytes for biological and commercial reasons and better cell utilization. A narrative review of the literature was carried out, through scientific articles, dissertations, theses and books published in the databases: Scopus, PubMed, Scielo and Google Scholar, with the aim of providing an overview of this biotechnique in goats with emphasis on the description emphasizing the main methodologies currently used for oocyte collection, IVM, IVF and IVC of embryos.
References
Anguita, B., Jimenez-Macedo, A. R., Izquierdo, D., Mogas, T. & Paramio, M. T. (2007). Effect of oocyte diameter on meiotic competence, embryo development, p34 (cdc2) expression and MPF activity in prepuberal goat oocytes. Theriogenology, 67, 526-536.
Amiridis, G. S. C. S. E. H. S. (2012). Assisted reproductive technologies in the reproductive management of small ruminants. Animal Reproduction Science, 130, 152-161.
Aye, M., Giorgio, C. D. I., Mo, M. D. E., Botta, A, Perrin, J. & Courbiere, B. (2010). Assessment of the genotoxicity of three cryoprotectans used for human oocyte vitrification: dimethyl sulfoxide. Ethylene glycol and propylene glycol. Food and Chemical Toxicology, 48, 1905-1912.
Balakier, H. & Tarkowski, A. K. (1976). Diploid parthenogenetic mouse embryos produced by heat-shock and cytochalasin B. Jounar of Embryology and Experimental Morphology, 35, 25–39.
Baldassarre, H., Wang, B., Kafidi, N., Keefer, C.L., Lazaris, A. & Karatzas, C. N. (2002). Advances in the production and propagation of transgenic goats using laparoscopic ovum pick-up and in vitro embryo production technologies. Theriogenology, 57, 275-284.
Baldassare, H., Koeman, J., Keefer, C. L.& Downey, B. (2003). Nuclear transfer in goats using in vitro matured oocytes recovered by laparoscopic ovum pikc-up. Cloning Stem Cells. Philadelfia, 5, 279-285.
Baldassare, H. & Karatzas, C. N. (2004). Advenced assited reproduction tecnologies (ART) in goats. Animal Reproduction Science, Dublin, 82, 255-266.
Baldassare, H. (2012) Practical aspects for implemeting in vitro embryo productio and cloning programs in sheep and doats. Animal Reproduvtion Science, Dublin, 9, 188-194.
Baldassare, H., Menchaca, A., Anegon, I., Whitelaw, B. & Crispo, M. (2016). New insights and current toos for genetically engineered (EG) sheep and goats. Theriogenology, 86, 160-169.
Brayton, C. F. (1986). Dimethyl sulfoxide (DMSO): a review. Cornell Veterinarian, 76, 76-90.
Camargos, M. G. R. S., Rodrigues, J. K., Lobach, V. N., Cury-silva, T. E., Nunes, M. G., Camargos, A. F. & Reis, F. M. (2019) Human oocyte morphometry before and after cryopreservation: a prospective cohort study. Cryobiology, 88, 81-86.
Camici, G. G., Steffel, J., Akhmedov, A., Schafer, N., Baldinge, R. J., Schulz, U., Shojaati, K., Matter, C. M., Yang, Z., Lüscher T. F.& Tanner, F. C. (2006) Dimethyl sulfoxide inhibits tissue factor expression, thrombus formation, and vascular smooth muscle cell activation. Circulation, 114, 1512-1521.
Carneiro, G., Lorenzo, P., Pimentel, C., Pegoraro, L., Bertolini, M., Ball, B., Anderson, G. & Liu, I. (2001) Influence of insulin-like growth factor-I and interaction with gonadotropins, estradiol, and fetal calf serum on in vitro maturation and parthenogenic development in equine oocytes. Biology of Reproduction, 65, 899-905.
Carvalho, J. M., Maia, G. A., Sousa, P. H. M. & Jùnior, G. A. M. (2006) Água-de-coco: Propriedades nutricionais, funcionais e processamento. Ciências agrárias, 27, 437-452.
Carpenter, R. J., Angel, M. F. & Morgan, R. F. (1994). Dimethyl sulfoxide increases the survival of primarily ischemic island skin flaps. Otolaryngology Head Neck Surgery, 110, 228-231.
Carnevale, E. M. (1996). Gamete intrafallopian transfer. Veterinary Clinics of North America Equine Practice, 12, 47-60.
Chaves, R. N., Duarte, A. B. G., Matos, M. H. T. & Figueiredo, J. R. (2010). Sistemas de cultivo in vitro para o desenvolvimento de oócitos imaturos de mamíferos. Revista Brasileira de Reprodução Animal, Belo Horizonte, 34, 37-49.
Cocero, M. J., Alabart, J. L., Hammami, S., Martí, J. I., Lahoz, B., Sánchez, P., Echegoyen, E., Beckers, J. F. & Folch, J. (2011). The efficiency of in vitro ovine embryo production using an undefined or a defined maturation medium is determined by the source of the oocyte. Reproduction Domestic Animal, 46, 463-470.
Cognié, Y., Baril, G., Poulin, N. & Mermillod, P. (2003). Current status of embryo technologies in sheep and goat. Theriogenology, 59, 171-188.
Cognie, Y., Poulin, N., Locatelli, Y.& Mermillod P. (2004). State-of-the-art production, conservation and transfer of in vitro-produced embryos in small ruminants. Reproduction Fertility and Development, 16, 437-445.
Crivellenti, L. Z., Crivellenti, S. B. & Carvalho, M. B. (2013). Toxicidade do dimetilsulfóxido em cães hígidos e doentes renais crônicos. Ciencia Rural, 43, 1831-1837.
Crozet, N., Ahmed, A. & Dubos, M. P. (1995) Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro. Journal of Reproduction Fertility, 105, 293-298.
Curcio, B. R., Gastal, M. O., Pereira, G. R., Corcini, C. D., landim-Alvarenga, F. C., Barros, S. S., Nogueira, C. E. W., Deschamps, J. C. & Gastal E. L. (2014). Ultrastructural Morphology and Nuclear Maturation Rates of Immature Equine Oocytes Vitrified with Different Solutions and Exposure Times. Journal of Equine Veterinary Science, 34, 632-640.
Damasceno, T. C. M. Qualidade de oócitos ovinos após criopreservação em meio alternativo contendo ACP-408®. 2017. 52f. (Dissertação de Mestrado) – Programa de Pós-graduação em Ciência Animal, Universidade Federal do Piauí, Teresina, Brasil.
Damiani, P., Fissore, R. A., Cibelli, J. B., Long, C. R., Balise, J. J., Robl, J. M. & DUBY, R.T. (1996). Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes. Molecular Reproduction and Development, 45, 521–534.
Ducibella, T. & Buetow, J. (1994). Competence to undergo normal, fertilization-induced cortical activation develops after metaphase I of meiosis in mouse oocytes. Developmental Biology, 165, 95–104.
Estrela, C. (2018). Metodologia Cientifica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.
Fair, T., Hyttel, P. & Greve, T. (1995). Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Molecular Reproduction and Development, 42, 437–442.
Fernandes, C. B., Peres, K. R., Alvarenga, M. A. & Landim- Alvarenga, F. C. (2006). The Use of Transmission Electron Microscopy and Oocyte Transfer to Evaluate In Vitro Maturation of Equine Oocytes in Different Culture Conditions. Journal of Equine Veterinary Science, 26, 159-167.
Fissore, R. A., Kurokawa M., Knott, J., Zhang M. & Smyth J. (2002). Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction, 124, 745-754.
Freitas, V. J. F., Andrade M. L. L., Cajazeiras, J. B. & Luz, J. V. (2007). Produção in vitro de embriões em pequenos ruminantes explorados no nordeste do Brasil. Acta Scientiae Veterinariae, 35, 781-786.
Freitas, V. J. F. (2013). Criopreservação de oócitos e embriões. In: Oliveira, M. E. F., Teixeira P. P. M. & Vicente, W. R. R. (Eds.). Biotécnicas Reprodutivas Em Ovinos e Caprinos, 1. ed., São Paulo, SP. MedVet, p. 201.
Fuku, E., Kojima, T., Shioya, Y., Marcus, G. J. & Downey, B. R. (1992). In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology, 29, 485-492.
Funahashi, H., Cantley T., Stumpf, T. T., Terlouw, S. L., Rieke, A. & Day, B. N. (1994). In vitro development of in vitro matured pig oocytes following chemical activation or in vitro fertilization. Biology of Reproduction, 50, 1072–1077.
Gaylor Chemical Company. (2007). Dimethyl sulfoxide (DMSO) health and safety information. Slidell Bulletin, 106, 16.
Gabrielsen, A., Bhatnager, P. R., Petersen, K. & Lindenberg, S. (2000). Influence of zona pellucida thickness of human embryos on clinical pregnancy outcome following in vitro fertilization treatment. Journal of Assisted Reproduction and Genetics, 17, 323-328.
Gilchrist, B., Lane, M., Thompson, J. G. (2017). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Human Reproduction Update, 14, 159-177.
Gonçalves, P. B. D., FIgueiredo, J. R. & Freitas, V. J. F. (2008.) Biotécnicas Aplicadas a Reprodução Animal. (2a ed.), Roca.
Graff, K. J., Meintjes, M., Dyer, V. W., Paul, J. B., Denniston, R. S., Ziomek, C. & Godke, R. A. (1999) Transvaginal ultrasound-guided oocyte retrieval following FSH stimulation of domestic goats. Theriogenology, 51, 1099-1119.
Grondahl, C., Host, T., Brück, I., Viuff, D., Bezard, J., Fair, T., Greve, T. & Hyttel, P. (1995). In vitro production of equine embryos. Biololgy of Reproduction, 1, 299-307.
Hashimoto, N. & Kishimoto, T. (1986). Cell cycle dynamics of maturation promoting factor during mouse oocyte maturation. Tokai Journal of Experimental and Clinical Medicine, 11, 471–477.
Henery, C. C. & Kaufman, M. H. (1992). Cleavage rate of haploid and diploid parthenogenetic mouse embryos during the preimplantation period. Molecular Reproduction and Development, 31, 258–263.
Hipp, J. A. & Atala, A. (2004). A tissue engineering, stem cells, cloning, and partenogenesis, new paradigms of therapy. Journal Experimental e Clinical Assisted Reproduction, 1, 3.
Hunter, R. H. F. & Polge, C. (1966). Maturation of follicular oocytes in the pig after injection of human chorionic gonadotrophin. Journal Reproduction and Fertility, 12, 525-531.
Juhi, P. S. D., Kharche, A. K., Goel, S. K. & Jindal, S. (2013). Comparative study on parthenogenetic activation and embryo production from in vitro matured caprine oocytes. Small Ruminant Research, 113, 136-140.
Kalous, J., Kubelka, M., Rimkevicova, Z., Guerrier, P. & Motlik, J. (1993). Okadaic acid accelerates germinal vesicle breakdown and overcomes cycloheximide- and 6- dimethylaminopurine block in cattle and pig oocytes. Developmental Biolology, 157, 448–454.
Kharche, A. K., Goel, S. K.., Jindal, S., Jha, B. K. & Goel, P. (2013). Assessment of parthenogenetic embryo production by activation of in vitro matured caprine oocytes with different concentrations of ethanol. Small Ruminant Research, 111, 100-103.
Kim, N. H., Simerly, C., Funahashi, H., Schatten, G. & Day, B. N. (1996). Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biology of Reproduction, 54, 1397–1404.
Kim S. S., Kang, H. G., Kim, N. H., Lee, H. C. & Lee, H. H. (2008). Assessment of the integrity of human oocytes retrieved from cryopreserved ovarian tissue after xenotransplantation. Human Reproduction, 20, 2502-2508.
Krisher, R. L. (2004). The effect of oocyte quality on development. Journal of Animal Science, 82, 14-23.
Lee, P. A., Mora, S. J. & Levasseur, M. A. (1999). Review of dimethylsulfoxide in aquatic environments. Atmosphere-ocean, 37, 439-456.
Li, P., Ledda, S., Fulka, J. J., Cappai, P. & Moor, R. M. (1998) Development of parthenogenetic and cloned ovine embryos, effect of activation protocols. Biology of Reproduction, 58, 1177–1187.
Martins, L. & Cardoso, D. (2005). Produção de etilenoglicóis e derivados por reações catalíticas de óxido de eteno. Química Nova, 28, 264-273.
Masui, Y. & Markert, C. L. (1971). Cytoplasmic control of nuclear behaviour during meiotic maturation of frog oocytes. Journal of Experimental Zoology, 177, 129–145.
Miller, D. J., Gong, X. & Decker, G. (1993). Egg cortical granule Nacetylglucosaminidase is required for the mouse zona block to polyspermy. The Journal of Cell Biology, 123, 1431–1440.
Miyara, F., Mign, E, C., Dumont-Hassan, M., Le M. A., Cohen-Bacrie, P., Aubriot, F. X., Glissant, A., Nathan, C., Douard, S., Stanovici, A. & Debey, P. (2003). Chromatin configuration and transcriptional control in human and mouse oocytes. Molecular Reproduction and Development, 64, 458–470.
Moura, J. G. P. (2009). Nutrientes e terapêutica, como usá-los quando usá-lo como avalia suas carências radicias livres na saúde. (2a ed.), Visão artes, p. 340.
Nunes, J. F. (2010). Biotécnicas Aplicadas a Reprodução de Pequenos Ruminantes. Tecnograf.
Nurse, P. (1990). Universal control mechanism regulating the onset of Mphase. Nature, 344, 503–508.
Nussbaum, D. J. & Prather, R. S. (1995). Differential effects of protein synthesis inhibitors on porcine oocyte activation. Molecular Reproduction and Development, 195, 70–75.
Paula, N. R. O., Cardoso, J. F. S., Oliveira, M. A.L. & Freitas V. J. F. (2008). Embriões caprinos produzidos in vivo ou in vitro: técnicas, problemas e perspectivas. Revista Brasileira Reprodução Animal, 32, 21-35.
Paramio, M. T. & Izquierdo, D. (2014). Assisted reproduction technologies in goats. Small Ruminant Research, 121, 21–26.
Paramio, M. T. & IZquierdo, D. (2016). Recentes avanços na produção in vitro de embriões em pequenos ruminantes. Theriogenology, 86, 152-159.
Pegg, D. E. (2007). Cryopreservation and Freeze-Drying Protocols Methods. Molecular Biology, 2, 348.
Rajan, R. & Matsumura, K. (2018). Development and Application of Cryoprotectants. Adv Exp Med Biol., 1081, 339-354.
Rienze, L., Gracia, C., Maggiulli, R., Labarbera, A. R., Kaser, D. J., Ubaldi, F. M., VanderpoeL, S. & Racowsky, C. (2017). Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Human Reproduction Update, 23, 139-155.
Rocha-Frigoni, N. A. R., Leão, B. C. S., Feliciano, M. A. R., Vicente, W. R. R. & Oliveira, M. E. F. (2014). Produção in vitro de embriões: avanços e desafios. Revista Brasileira de Reprodução Animal, 38, 103-109.
Rodríguez-González, E., López-Bejar, M., Izquierdo, D. & Paramio, M. T. (2003). Developmental competence of prepubertal goat oocytes selected with brilliant cresyl blue and matured with cysteamine supplementation. Reproduction Nutrition Development, 43, 179-187.
Rubinsky, B. (2003). Principles of low temperature cell preservation. Heart Failure Reviews, 8, 277-284.
Ruderman, J., Luca, F., Shibuya, E., Gavin, K., Boulton, T. & Cobb, M. (1991). Control of the cell cycle in early embryos. Cold spring harbor symposia on quantitative biology, 56, 495–502.
Sanches, B. V., Marinho, L. S. R, Filho, B. D. O., Pontes, J. H. F., Basso, A. C., Meirihos, M. L. G., Silva-Santtos, K. C., Ferreira, C. R. & Seneda. S. (2013). Cryosurvival and pregnancy rates after exposure of IVF derived Bos indicus embryos to forskolin before vitrification. Theriogenology, 80, 372-377.
Samake, S., Amoah, E. A., Mobini, S., Gazal, O. & Gelaye, S. (2000). In vitro fertilization of goat oocytes during the nonbreeding season. Small Ruminant Research, 35, 49–54.
Shen, P. C., Lee, S. N., Wu, J. S., Huang, J. C., Chu, F. H., Chang, C. C., Kung, J. C., Lin, H. H., Chen, L. R., Shiau, J. W., Yen, N. T. & Cheng, W. T. K. (2006). The effect of electrical field strength on activation and development of cloned caprine embryos. Animal Reproduction Science, 92, 310–320.
Shioya, Y., Kuwayama, M. & Fukushima, M. (1998). In vitro fertilization and cleavage capability of follicular oocytes classified by cumulus cells and matured in vitro. Theriogenology, 30, 489-489.
Silva, J. C. F., Silva, R. L. O., Vieira, J. I. T., Silva, J. B., Tavares, L. S., Silva, F. A. C., Pena, E. P. N., Chaves, M. S., Moura, M. T., Calsa-Junior, T., Benco-Iseppon, A. M., Freitas, V. J. F. & Oliveira, M. A. L. (2021). Evaluation of quality and gene expression of goat embryos produced in vivo and in vitro after cryopreservation. Cryobiology, 101, 115-124.
Silva, A. E., Cavalcante, L. F., Rodrigues, B. A. & Rodrigues, J. L. (2010). The influence of powdered coconut water (ACP-318®) in in vitro maturation of canine oocytes. Reproduction in Domestic Animals, 45, 1042-1046.
Silva, E. C. B., Cajueiro, J. F. P., Silva, S. V., Soares, P. C. & Guerra, M. M. P. (2012). Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology, 77, 1722-1726.
Slavik, T., Fulka, J. & Gall, I. (1992). Pregnancy rate after the transfer of sheep embryos originated from randomly chosen oocytes matured and fertilized in vitro. Theriogenology, 38, 749-756.
Sojka, J. E., Brisson-Kimmick, S. V., Carlson, G. P. & Coppoc, G. L. (1990). Dimethyl sulfoxide update – New applications and dosing methods. Proceedings… of the annual convention of the American Association of Equine Practitioners, 36, 683-690.
Stringfellow, D. A. & Givevens, M. D. (2010). Manual of the International Embryo Trasfer Society, International Embryo Transfer Society. 200.
Succu, S., Gadau, S. D., Serra, E., Zinellu, A., Carru, C., Porcu, C., Naitana, S., Berlinguer, F. & Leoni, G. G. (2018). A recovery time after warming restores mitochondrial function and improves developmental competence of vitrifield ovine oocytes. Theriogenology, 110, 18-26.
Sumner, S. C. J., Fennell, T. R., Moore, T.A., Chanas, B., Gonzalez, F. & Ghanayem, B. I. (1999). Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chemical Research Toxicology, 12, 1110-1116.
Suresh, A., Shukla, M. K., Kumar, D., Shrivastava, O. P. & Vermaneera, J. (2021). Simulated physiological oocyte maturation (spom) improves developmental competence of in vitro produced goat embryos. Theriogenology, 172, 193-199.
Ten, J., Mendiola, J., Vioque, J., De Juan, J. & Bernabeu, R. (2007). Donor oocyte dysmorphisms and their influence on fertilization and embryo quality. Reproductive Biomedicine Online, 14, 40-48.
Tanghe, S., Soom, A. V. & Mehrzad, J. (2003). Cumulus contributions during bovine fertilization in vitro. Theriogenology, 60, 135-149.
Vajta, G., Kuwayama, M. & Vanderzwalmen, P. (1991). Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes. Developmental Biology, 143, 162–172.
Wusteman, M., Rauen, U., Simmonds, J., Hunds, N. & Pegg, D. E. (2008). Reduction of cryoprotectant toxicity in cell in suspension by use of a sodium-fee vehicle solution. Cryobiology, 56, 72-79.
Yuan, Y. O., Van, S. O. O. M. A., Coopman, F. O., Mintiens, K., Boerjan, M. L., Van Zeveren A., De Kruif, A. & Peelman, L. J. (2003). Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology, 59, 1585-1596.
Yurchuk, T., Petrushko, M. & Fuller, B. (2018). Science of cryopreservation in reproductive medicine - Embryos and oocytes as exemplars. Early Human Development, 126, 6-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Marlene Sipaúba de Oliveira; Letícia Soares de Araújo Teixeira; Kenney de Paiva Porfírio; Cristiane Clemente de Mello Salgueiro; Jose Ferreira Nunes; Ana Lys Bezerra Barradas Mineiro; Janaina de Fátima Saraiva Cardoso; Ney Rômulo Oliveira Paula
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.