Digital coinage of ethereum-derived cryptocurrency with an emphasis on reducing energy consumption in blockchain creation, verification and transaction

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.40106

Keywords:

Cryptocurrencies; Energy consumption; Ethereum; Blockchain.

Abstract

The article aims to analyze the digital minting process of a cryptocurrency derived from Ethereum, this work aims to demonstrate the reduction of energy consumption in the creation of this cryptocurrency. This article also contributes to the growth of work that will be carried out in the future in the crypto asset segment. That said, this study addresses all the steps related to creation, which had the following phases from opening a digital wallet for storage, to minting, defining the amount and network as the basis for the constitution of a cryptocurrency. The methodology used was the qualitative method, this method describes the empirical knowledge that involves the concept and definitions of new crypto asset technologies. It was possible to conclude that, from the networks analyzed in the process of minting and energy consumption, Ethereum contributes in a more beneficial way to its users and the environment. To complete these benefits, Ethereum will support 100,000 transactions per second in version 2.0, in addition, it will need less computational power for validation, it also aims at efficiency in the energy needed to validate operations, which causes less electrical energy spent, therefore, there is much less energy consumption, moreover in a more concrete way, decentralization and price appreciation.

References

Andujar, A. J. F., Rode, F., & Bastos, P. S. M. (2018). Os Impactos do Blockchain na Auditoria Contábil. In 16o ENECON – Encontro Catarinense de Estudantes de Ciências Contábeis. Centro Universitário Municipal de São José (USJ).

Arcenegui, J., Rosario Arjona, R. R., & Baturone, I. (2021) Secure Combination of IoT and Blockchain by Physically Binding IoT Devices to Smart Non-Fungible Tokens Using PUFs. Sensors (Basel, Switzerland).

Castañeda-Ayarza, J. A., Neves, C., & Frazão Teixeira, A. (2019). Pesquisa bibliográfica sobre os estudos científicos relacionados com o bitcoin e a blockchain. Contextus – Revista Contemporânea de Economia E Gestão, 17(3), 66–87.

Chervinski, J. O. M., & Kreutz, D. (2019). Introdução às tecnologias dos blockchains e das criptomoedas. Revista Brasileira de Computação Aplicada, 11(3), 12–27.

Cong, L. W., Li, Y., & Wang, N. (2022). Token-based platform finance. Journal of Financial Economics, 144(3), 972–991.

Croman, K., Decker, C., Eyal, I., Gencer, A., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E., Gün Sirer, E., Song, D., Wattenhofer, R., Jacobs, C., Tech, C., & Nus. (2016). On Scaling Decentralized Blockchains (A Position Paper) Initiative for CryptoCurrencies and Contracts (IC3).

Decker, C., Wattenhofer, R., Zurich, E., & Switzerland. (2013). Information Propagation in the Bitcoin Network.

Dierksmeier, C., & Seele, P. (2016). Cryptocurrencies and Business Ethics. Journal of Business Ethics, 152(1), 1–14.

Dowling, M. (2021). Is non-fungible token pricing driven by cryptocurrencies? Finance Research Letters, 44(102097), 102097.

Gan, G., Chen, E., Zhou, Z., & Zhu, Y. (2020). Token-Based Access Control. IEEE Access, 8(2979746), 54189–54199.

Jain, A., & Jain, C. (2019). Blockchain hysteria: Adding “blockchain” to company’s name. Economics Letters, 181(181), 178–181.

Kraus, D., Thierry Obrist, O. H., & Edward Elgar Publishing. (2019). Blockchains, smart contracts, decentralised autonomous organisations and the law. Edward Elgar Pub.

Leal, F., Chis, A. E., & González–Vélez, H. (2020). Performance Evaluation of Private Ethereum Networks. SN Computer Science, 1(5).

Machado, A. S., Helfenstein, L. A., & Santos, K. S. (2022). Bitcoin: analysis on the new format of financial transactions. Revista INGI. 6(2), 1609-22.

Silva, M. M. (2022, October 31). Atualização da Ethereum reduziu consumo de energia da rede em mais de 99,9%. Exame. https://exame.com/future-of-money/atualizacao-da-ethereum-reduziu-consumo-de-energia-da-rede-em-mais-de-999/.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

Momo, F. da S., & Behr, A. (2019). Blockchain: Perfil das pesquisas divulgadas em periódicos acadêmicos. Revista de Administração FACES Journal, 18(1), 8–28.

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. UFSM.

Salem, A. (2021). O que é a tecnologia blockchain? - IBM Blockchain. Www.ibm.com. https://www.ibm.com/br-pt/topics/what-is-blockchain

Santos, M. (2016). Bitcoin: Funcionamento e Características de uma Criptomoeda.

Strawn, G. (2019). BLOCKCHAIN. IT Professional, 21(1), 91–92.

Wang, Z., Liu, J., Wu, Q., Zhang, Y., Yu, H., & Zhou, Z. (2019). An analytic evaluation for the impact of uncle blocks by selfish and stubborn mining in an imperfect Ethereum network. Computers & Security, 87(101581), 101581.

Published

01/02/2023

How to Cite

ANDRADE, L. M. de .; MADUREIRA, A. C. R. .; SANTOS, W. J. C. dos .; CONTE, T. N. M. de S. . Digital coinage of ethereum-derived cryptocurrency with an emphasis on reducing energy consumption in blockchain creation, verification and transaction . Research, Society and Development, [S. l.], v. 12, n. 2, p. e16712240106, 2023. DOI: 10.33448/rsd-v12i2.40106. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40106. Acesso em: 21 jan. 2025.

Issue

Section

Engineerings