Bibliographic survey of the causal relationship between Neurological disorders and Covid-19




Neuronal Injury; SARS-CoV-2; Covid-19.


This study aims to perform an integrative literature review to understand the causal relationship between neurological disorders and Covid-19 and to point out new updates on the subject. The world experienced the pandemic of coronavirus disease 2019, a severe acute respiratory syndrome caused by the coronavirus SARS-CoV-2, having as one of the most frequent pathological consequences neurological disorders. Damage to the central nervous system (CNS) related to infection can occur due to multiple reasons, including: Damage by direct viral invasion there are neurons; Decreased oxygen levels due to hypoxia; Formation of microthrombi with a persistent inflammatory state that induces cerebrovascular complications. Direct viral invasion leads to adverse effects on neurons in several aspects, such as cell morphology, electrophysiology, subcellular structures, and cell death. Hypoxemia has the ability to disturb the integrity of the blood brain barrier, allowing the infiltration of peripheral immune cells and protein leakage, which promotes CNS dysfunction. To date, epidemiological studies indicate that a high pathological relationship between Covid-19 and neurological diseases. Accumulated evidence indicates that patients who developed Covid-19 may present with long-term apparent neurological symptoms, such as headache, altered mental status, anosmia, and myalgia. The harmful relationship between SARS-CoV-2 infection and neurological diseases is notorious, but new searches to better understand its etiology are crucial.


Al-Ramadan, A., Rabab’h, O., Shah, J., & Gharaibeh, A. (2021). Acute and Post-Acute Neurological Complications of COVID-19. Neurol. Int, 13, 102-119.

Augustine, R., S, A., Nayeem, A., Salam, S. A., Augustine, P., Dan, P., & Hasan, A. (2022). Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin–angiotensin-aldosterone system (RAAS) dysregulation. Chemico-Biological Interactions, 351.

Brann, D. H., Tsukahara, T., Weinreb, C., Lipovsek, M., Gong, B., Chance, R., Macaulay, I. C., & Datta, S. R. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system sugests mechanisms underlying COVID-19–associated anosmia. Sci Adv, 6(31).

Bridwell, R., Long, B., & Gottlieb, M. (2020, July). Neurologic complication sof COVID-19. American Journal of Emergency Medicine, 38(7), 1549e3-1549e7.

Dantas, H. L. de L., Costa, C. R. B., Costa, L. de M. C., Lúcio, I. M. L., & Comassetto, I. (2022). Como elaborar uma revisão integrativa: sistematização do método científico. Revista Recien - Revista Científica de Enfermagem, 12(37), 334–345.

Darif, D., Hammi, I., Kihel, A., Saik, I. E. I., Guessous, F., & Akarid, K. (2021). The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microbial Pathogenesis, 153.

Ebinger, J. E., Achamallah, N., Ji, H., Claggett, B. L., Sun, N., Botting, P., & Cheng, S. (2020). Pre-existing traits associated with Covid-19 illness severity. PLOS ONE, 15(7). 10.1371/journal.pone.0236240

Hingorani, K. S., Bhadola, S., & Cervantes-Arslanian, A. M. (2022). COVID-19 and the brain. Trends in Cardiovascular Medicine, 32, 323-330.

Hoffmann, M., Weber, H., Schroeder, S., Muller, M., Drosten, C., & Pohlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280.

Li, Y., Zhang, Y., & Tan, B. (2021). What can cerebrospinal fluid testing and brain autopsies tell us about viral neuroinvasion of SARS‐CoV‐2. J Med Virol, 93(7), 4247-4257.

Mehrabani, M. M., Karvandi, M. S., Maafi, P., & Doroudian, M. (2022). Neurological complications associated with Covid‐19; molecular mechanisms and therapeutic approaches. Rev Med Virol, 2334.

Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M., McGroder, C., Stevens, J., Cook, J., & Wan, E. (2021). Post-acute COVID-19 syndrome. Nature Medicine, 27, 601-6015.

Newcombe, V., Dangayach, N., & Sonneville, R. (2021). Neurological complications of COVID 19. Intensive Care Med, 47, 1021-1023.

Ruiz, V. J. C., Montes, R. I., Puerta, J. M. P. J. M., Ruiza, C., & Rodrígueza, L. M. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews, 54, 62-75.

Sathish, T., Kapoor, N., Cao, Y., Tapp, R. J., & Zimmet, P. (2020). Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Wiley, 23(3), 870-874.

Shimohata, T. (2022). Neuro-COVID- 19. Clin Exp Neuroimmunol, 13, 17-23.

Sun, P., Qie, S., Liu, Z., Ren, J., Li, K., & Xi, J. (2020). Clinical characteristics of hospitalized patients with SARS‐CoV‐2 infection: A single arm meta‐analysis. J Med Virol, 92, 612-617.

Souza, M. T. D., Silva, M. D. D., & Carvalho, R. D. (2010). Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 8, 102-106.

Tiwari, N. R., Phatak, S., Sharma, V. R., & Agarwal, S. K. (2021). COVID-19 and thrombotic microangiopathies. Thrombosis Research, 202, 191-198.

Wool, G. D., & Miller, J. L. (2020). The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology, 88(1), 15-27.

Xu, J., & Lazartigues, E. (2022). Expression of ACE2 in Human Neurons Supports the Neuro Invasive Potential of COVID 19 Virus. Cellular and Molecular Neurobiology, 42, 305-309.



How to Cite

CARVALHO, F. dos S. .; AMARAL, J. S. P. do; DIAS, A. H. de Q. .; PORTOLEZ, C. G. . .; MARASSI, F. . . .; RODRIGUES, F. N. . . .; MACHADO, E. C. .; ZAMBRIN, G. C. . . .; BIANCHI, C. S. . . .; OLIVEIRA, C. F. . Bibliographic survey of the causal relationship between Neurological disorders and Covid-19 . Research, Society and Development, [S. l.], v. 12, n. 4, p. e17412441101, 2023. DOI: 10.33448/rsd-v12i4.41101. Disponível em: Acesso em: 29 may. 2024.



Health Sciences