Characterization of the Enterobacter aerogenes sample from colonization regarding CRISPR-Cas systems and comparison with infection sample

Authors

DOI:

https://doi.org/10.33448/rsd-v12i5.41464

Keywords:

Gene Editing; Enterobacteriaceae; Palindromic repetitions.

Abstract

Enterobacter aerogenes represents a non-spore-forming, facultative anaerobic, gram-negative bacterium. It presents itself as a multiresistant microorganism that is directly related to opportunistic infections, especially in the hospital environment. This bacterium has several mechanisms to remain active, we can highlight among these, the use of the CRISPR-Cas system to immunize them from infection by mobile genetic elements. The CRISPR system (short palindromic repeats at regular intervals in cluster) is a genetic tool responsible for cleaving the double strand of DNA at specific loci through Cas endonucleases. In view of the above, the present study aimed to characterize a sample of Enterobacter aerogenes from colonization regarding the CRISPR-Cas systems and compare it with a sample of infection. When analyzing the Colonization isolate (Ea5A), 31 genes were identified that were related to the CRISPR system, among these, only 4 were associated with Cas endonucleases, numerous spacers were found in the sample. Furthermore, the comparison between the colonization and infection isolates proposed that the genes are independent of the source of bacterial isolation. The CRISPR-Cas system is a new subject, but it is already considered an important tool for genetic engineering.

References

Arend, M. C., Pereira, J. O., & Markoski, M. M. (2017). The CRISPR/Cas9 System and the Possibility of Genomic Edition for Cardiology. Arquivos brasileiros de cardiologia, 108(1), 81–83. https://doi.org/10.5935/abc.20160200

Barrangou, R., & Horvath, P. (2012). CRISPR: New Horizons in Phage Resistance and Strain Identification. Annual Review of Food Science and Technology, 3(1), 143-162.

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 15, 339(6121), 819-823. 10.1126/science.1231143.

Garneau, J. E., Dupuis, M È., & Villion, M. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 4, 468(7320), 67-71. 10.1038/nature09523.

González de Aledo, M., González-Bardanca, M., Blasco, L., Pacios, O., Bleriot, I., Fernández-García, L., Fernández-Quejo, M., López, M., Bou, G., & Tomás, M. (2021). CRISPR-Cas, a Revolution in the Treatment and Study of ESKAPE Infections: Pre-Clinical Studies. Antibiotics (Basel), 22, 10(7), 756. 10.3390/antibiotics10070756.

Hao, M., He, Y., Zhang, H., Liao, X .P., Liu, Y. H., Sun, J., Du, H., Kreiswirth, B. N., & Chen, L. (2020). CRISPR-Cas9-Mediated Carbapenemase Gene and Plasmid Curing in Carbapenem-Resistant Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 20, 64(9), e00843-20. 10.1128/AAC.00843-20.

Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233-239. 10.1038/nbt.2508.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A. programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 17, 337(6096), 816-821. 10.1126/science.1225829.

Lammoglia-Cobo, M. F., Lozano-Reyes, R. D., García-Sandoval, C. D., Avilez-Bahena, C. M., Trejo-Reveles, V. T., Muñoz-Soto, R. B., & López-Camacho, C. A. (2016). La revolución en ingeniería genética: sistema CRISPR/Cas. Investigación en Discapacidad, 5(2), 116-128.

Silva, J .R. M., Bezerra, E. C. S., de Lima, J. C., Carvalho, M. S. N., Rezende, A. M., Rocha, T. J. M., Silva, J .C., Lopes, A. C. S., & Cabral, A. B. (2022). Caracterização de genes relacionados a bacteriófagos em Enterobacter aerogenes proveniente de infecção em paciente de hospital de Recife-PE, Brasil. Research, Society and Development, 11(12), e481111235004, (CC BY 4.0) | ISSN 2525-3409 | http://dx.doi.org/10.33448/rsd-v11i12.35004.

Medina-Aparicio, L., Dávila, S., Rebollar-Flores, J. E., Calva, E., & Hernández-Lucas, I. (2018). The CRISPR-Cas system in Enterobacteriaceae. Pathogens and disease, 76(1), 10.1093/femspd/fty002. https://doi.org/10.1093/femspd/fty002

Mortensen, K., Lam, T. J., & Ye, Y. (2021). Comparison of CRISPR-Cas Immune Systems in Healthcare-Related Pathogens Frontiers in Microbiology, 25(12), 758782. 10.3389/fmicb.2021.758782.

Nuñez, J. K., Kranzusch, P. J., Noeske, J., Wright, A. V., Davies, C. W., & Doudna, J. A. (2014). Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nature structural & molecular biology, 21(6), 528–534. https://doi.org/10.1038/nsmb.2820

Shipman, S. L., Nivala, J., Macklis, J. D., & Church, G. M. (2016). Molecular recordings by directed CRISPR spacer acquisition. Science, 353 (6298), aaf1175. 10.1126/science.aaf1175

Shen, J., Lv, L., Wang, X., Xiu, Z., & Chen, G. (2017). Comparative analysis of CRISPR-Cas systems in Klebsiella genomes. Journal of basic microbiology, 57(4), 325–336. https://doi.org/10.1002/jobm.201600589

Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F., & Koonin, E. V. (2015). Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular cell, 60(3), 385–397. https://doi.org/10.1016/j.molcel.2015.10.008

Touchon, M., Charpentier, S., Pognard, D., Picard, B., Arlet, G., Rocha, E. P., Denamur, E., & Branger, C. (2012). Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology (Reading, England), 158(12), 2997–3004. https://doi.org/10.1099/mic.0.060814-0

Wesevich, A., Sutton, G., Ruffin, F., Park, L. P., Fouts, D. E., Fowler, V. G., Jr, & Thaden, J. T. (2020). Newly Named Klebsiella aerogenes (formerly Enterobacter aerogenes) Is Associated with Poor Clinical Outcomes Relative to Other Enterobacter Species in Patients with Bloodstream Infection. Journal of clinical microbiology, 58(9), e00582-20. https://doi.org/10.1128/JCM.00582-20

Xue, C., & Sashital, D. G. (2019). Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus, 8(2), 10.1128/ecosalplus.ESP-0008-2018. https://doi.org/10.1128/ecosalplus.ESP-0008-2018

Zhang, Q., & Ye, Y. (2017). Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements. BMC bioinformatics, 18(1), 92. https://doi.org/10.1186/s12859-017-1512-4

Published

06/05/2023

How to Cite

SILVA , B. N. da .; DAMASCENO, E. G. .; LIMA, J. C. de .; CARVALHO, M. dos S. do N. .; GUIMARÃES, M. C. L. .; REZENDE, A. M. .; ROCHA , T. J. M. .; SILVA, J. C. .; LOPES , A. C. S. .; CABRAL, A. B. . Characterization of the Enterobacter aerogenes sample from colonization regarding CRISPR-Cas systems and comparison with infection sample . Research, Society and Development, [S. l.], v. 12, n. 5, p. e8712541464, 2023. DOI: 10.33448/rsd-v12i5.41464. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41464. Acesso em: 13 nov. 2024.

Issue

Section

Health Sciences