Nanoparticles as biological tools: an exploratory review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4155

Keywords:

Biology; Nanoparticles; Nanotechnology.

Abstract

Nanotechnology is a multidisciplinary science capable of developing great advances in the most diverse areas. The interest in the use of nanoparticles (NPs) in biological applications is notorious, due to their physicochemical properties. This study aims to present the biological applications of nanoparticles in modern science, in order to show the prospects for advancement in the area of nanotechnology aimed at biological applications. For this, an exploratory bibliographic review of a qualitative nature was carried out based on public productions between the years 2010 to 2020. The acquisitions of the works were carried out on the platforms Nature, Science, Scielo, Science Direct, Web of Science, Google Academic and Latindex. A general approach on the properties of nanoparticles was carried out, emphasizing their biological applications. It can be seen that the main areas of biological application of nanoparticles are the production of drugs and detection of diagnoses at the cellular level. In addition, it is clear that the gold nanoparticle is the most used in current studies. Thus, the present study aims to serve as a subsidy for researchers in the nanotechnology area, presenting in an exploratory and descriptive way the studies published in the last decade.

Author Biographies

Rafael Leandro Fernandes Melo, Instituto Federal do Ceará

Doutorando em Engenharia de Materiais - Universidade Federal do Ceará.

Professor da área de mecânica e materiais - Instituto Federal do Ceará.

Isabel Cristina da Cósta Souza, Secretaria do Estado do Rio Grande do Norte

Doutora em Bioquímica - Universidade Federal do Ceará.

Alessandro Jacinto Rodrigues Carvalho, Instituto Federal do Ceará

Mestrando em Engenharia de Materiais - Universidade Federal Rural do Semi-Árido.

Professor da área de mecânica e materiais - Instituto Federal do Ceará.

Eveline Matias Bezerra, Universidade Federal do Rio Grande do Norte

Doutora em ciência farmacêutica - Universidade Federal do Ceará.

Roner Ferreira da Costa, Universidade Federal Rural do Semi-Árido

Doutor em Física - Universidade Federal do Ceará.

References

Ahmad, B., Hafeez, N., Bashir, S., & Rauf, A. (2017). Phytofabricated gold nanoparticles and their biomedical applications. Biomedicine & Pharmacotherapy, 89, 414-425.

Alai, M. S., Lin, W. J., & Pingale, S. S. (2015). Application of polymeric nanoparticles and micelles in insulin oral delivery. Journal of food and drug analysis, 23(3), 351-358.

Angioletti-Uberti, S. (2017). Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. npj Computational Materials, 3(1), 1-15.

Baker, TA, Edelman, M., & Watanabe, NM (2017). Desmistificando o mito da NCAA de que o amadorismo está em conformidade com a lei antitruste: uma análise jurídica e estatística. Tenn. L. Rev., 85, 661.

Bapat, G., Labade, C., Chaudhari, A., & Zinjarde, S. (2016). Silica nanoparticle-based techniques for extraction, detection, and degradation of pesticides. Advances in colloid and interface science, 237, 1-14.

Bezerra, E. M. (2014). Quantum & nano em ciências farmacêuticas. (Doctoral dissertation, Universidade Federal do Ceará).

Bezerra, E. M., Bezerra-Neto, J. R., Sales, F. A., Dos Santos, R. P., Martins, A., Lima-Neto, D., ... & Freire, V. N. (2014). Optical absorption of the antitrypanocidal drug benznidazole inwater. Molecules, 19(4), 4145-4156.

Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 101518.

da Costa, R. F., Freire, V. N., Bezerra, E. M., Cavada, B. S., Caetano, E. W., de Lima Filho, J. L., & Albuquerque, E. L. (2012). Explaining statin inhibition effectiveness of HMG-CoA reductase by quantum biochemistry computations. Physical Chemistry Chemical Physics, 14(4), 1389-1398.

Das, R., Bandyopadhyay, R., & Pramanik, P. (2018). Carbon quantum dots from natural resource: A review. Materials today chemistry, 8, 96-109.

Dios, A. S., & Díaz-García, M. E. (2010). Multifunctional nanoparticles: analytical prospects. Analytica chimica acta, 666(1-2), 1-22.

Dreaden, E.C., Alkilany, A.M., Huang, X. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740-2779.

Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537-556.

Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials, 178, 597-607.

Frimmel, H. E. (2018). Episodic concentration of gold to ore grade through Earth's history. Earth-Science Reviews, 180, 148-158.

Goryacheva, O. A., Mishra, P. K., & Goryacheva, I. Y. (2018). Luminescent quantum dots for miRNA detection. Talanta, 179, 456-465.

Gul, A., Kunwar, B., Mazhar, M., Faizi, S., Ahmed, D., Shah, M. R., & Simjee, S. U. (2018). Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. International immunopharmacology, 59, 310-317.

Hassanien, A. S., & Khatoon, U. T. (2019). Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Physica B: Condensed Matter, 554, 21-30.

Hatef, A. S., Fortin, D. E. B., Lesage, F., Meunier, M. (2015). Photothermal response of hollow gold nanoshell to laser irradiation: continuous wave, short and ultrashort pulse. International Journal of Heat and Mass Transfer, 89, 866-871.

Heikkilä, E., Gurtovenko, A. A., Martinez-Seara, H., Häkkinen, H., Vattulainen, I., & Akola, J. (2012). Atomistic simulations of functional Au144 (SR) 60 gold nanoparticles in aqueous environment. The Journal of Physical Chemistry C, 116(17), 9805-9815.

Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles: surface effects and properties related to biomedicine applications. International journal of molecular sciences, 14(11), 21266-21305.

Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., & Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100-1111.

Jo, S. D., Nam, G. H., Kwak, G., Yang, Y., & Kwon, I. C. (2017). Harnessing designed nanoparticles: current strategies and future perspectives in cancer immunotherapy. Nano Today, 17, 23-37.

Kalimuthu, K., Cha, BS, Kim, S., & Park, KS (2020). Síntese ecológica e aplicações biomédicas de nanopartículas de ouro: uma revisão. Microchemical Journal, 152, 104296.

Kasithevar, M., Periakaruppan, P., Muthupandian, S., & Mohan, M. (2017). Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microbial pathogenesis, 107, 327-334.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931.

Klippstein, R., & Pozo, D. (2010). Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine: Nanotechnology, Biology and Medicine, 6(4), 523-529.

Lam, S. J., Wong, E. H., Boyer, C., & Qiao, G. G. (2018). Antimicrobial polymeric nanoparticles. Progress in polymer science, 76, 40-64.

Merum, S., Veluru, J. B., & Seeram, R. (2017). Functionalized carbon nanotubes in bio-world: applications, limitations and future directions. Materials Science and Engineering: B, 223, 43-63.

Mishra, P., Ray, S., Sinha, S., Das, B., Khan, M. I., Behera, S. K., ... & Mishra, A. (2016). Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochemical Engineering Journal, 105, 264-272.

Murphy, C. J., Thompson, L. B., Alkilany, A. M., Sisco, P. N., Boulos, S. P., Sivapalan, S. T., ... & Huang, J. (2010). The many faces of gold nanorods. The Journal of Physical Chemistry Letters, 1(19), 2867-2875.

Nam, J., Son, S., Ochyl, L. J., Kuai, R., Schwendeman, A., & Moon, J. J. (2018). Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nature communications, 9(1), 1-13.

Narang, J., Malhotra, N., Singh, G., & Pundir, C. S. (2015). Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosensors and Bioelectronics, 66, 332-337.

O'Connor, F. A., Lucey, B. M., Batten, J. A., & Baur, D. G. (2015). The financial economics of gold—A survey. International Review of Financial Analysis, 41, 186-205.

Peng, Q., & Mu, H. (2016). The potential of protein–nanomaterial interaction for advanced drug delivery. Journal of Controlled Release, 225, 121-132.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

Pesnel, S., Zhang, Y., Weiling, F., & Morel, A. L. (2020). Dataset concerning plasmonic thermal destruction of murine melanoma by gold nanoparticles obtained by green chemistry. Data in brief, 105370.

Rajkumar, S., & Prabaharan, M. (2019). Multi-functional core-shell Fe3O4@ Au nanoparticles for cancer diagnosis and therapy. Colloids and Surfaces B: Biointerfaces, 174, 252-259.

Rossi, G., & Monticelli, L. (2016). Gold nanoparticles in model biological membranes: A computational perspective. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(10), 2380-2389.

Shao, Z., Yang, X., Zhu, G., & Zhong, M. (2017). Photon-induced interfacial charge transfer mechanism of porous silicon/TiO2 nanoparticles for photoelectrochemical performance. Journal of Photochemistry and Photobiology A: Chemistry, 338, 72-84.

Sharifi, M., Hosseinali, S. H., Alizadeh, R. H., Hasan, A., Attar, F., Salihi, A., ... & Akhtari, K. (2020). Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta, 120782.

Vácha, R., Martinez-Veracoechea, F. J., & Frenkel, D. (2011). Receptor-mediated endocytosis of nanoparticles of various shapes. Nano letters, 11(12), 5391-5395.

Yoon, H. Y., Selvan, S. T., Yang, Y., Kim, M. J., Yi, D. K., Kwon, I. C., & Kim, K. (2018). Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials, 178, 597-607.

Zhao, Y., Liu, Y., Li, X., Wang, H., Zhang, Y., Ma, H., & Wei, Q. (2018). Label-free ECL immunosensor for the early diagnosis of rheumatoid arthritis based on asymmetric heterogeneous polyaniline-gold nanomaterial. Sensors and Actuators B: Chemical, 257, 354-361.

Published

17/05/2020

How to Cite

MELO, R. L. F.; SOUZA, I. C. da C.; CARVALHO, A. J. R.; BEZERRA, E. M.; COSTA, R. F. da. Nanoparticles as biological tools: an exploratory review. Research, Society and Development, [S. l.], v. 9, n. 7, p. e363974155, 2020. DOI: 10.33448/rsd-v9i7.4155. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4155. Acesso em: 7 jan. 2025.

Issue

Section

Review Article