Ecophysiology of soybean in response to different sowing times and crop densities

Authors

DOI:

https://doi.org/10.33448/rsd-v12i5.41765

Keywords:

Environmental responses; Glycine max; Plant density; Seed production.

Abstract

Soybean (Glycine max (L.) Merril) is one of the most important crops in Brazil, being cultivated in most of the Brazilian territory. The objective of the study was to evaluate the ecophysiology of soybean plants in response to crop densities and sowing times. The experimental design used was randomized blocks in a factorial scheme with two sowing dates that is, november 15 and december 14, 2018) and with five plant densities (160, 200, 240, 280 and 320 thousand plants per hectare), with four repetitions. The evaluated characters were: chlorophyll “a” and “b”, leaf area index, root dry matter, stem dry matter, leaf dry matter, pod dry matter, number of pods per plant, height at R1 stage, number of reproductive nodes and yield per plant. Soybean cultivated in the second half of november favors higher levels of chlorophyll in leaves, greater accumulation of dry matter in roots, stems and leaves, as well as increased productivity. There were no significant correlations between leaf area index and plant height in stage R1, with the productivity index. Soybean cultivation at lower densities favors a greater number of reproductive nodes, number of pods and productivity per plant, expressing the phenotypic plasticity of the crop.

References

Ávila, M. R., Braccini, A. D. L., Motta, I. D. S., Scapim, C. A., & Braccini, M. D. C. L. (2003). Sowing seasons and quality of soybean seeds. Scientia Agricola, 60, 245-252.

Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento/Secretaria de Política Agrícola - Portaria nº 154, de 25 de julho de 2018. Aprovação do Zoneamento Agrícola de Risco Climático para a cultura de soja no Estado do Rio Grande do Sul, ano-safra 2018/2019. Diário Oficial da União, Brasília, DF, 26 Julho 2018. Ed. 143, Seção 1, Pag.5, 2018. https://www.gov.br/agricultura/pt-br/assuntos/riscos-seguro/programa-nacional-de-zoneamento-agricola-de-risco-climatico/portarias/safra-2018-2019/rio-grande-do-sul-rs/pdf/port-no-154-soja-rs.pdf

Choi, J., Summers, W., & Paszkowski, U. (2018). Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annual Review of Phytopathology, 56, 135-160.

de Oliveira Procópio, S., Junior, A. A. B., Debiasi, H., dos Santos, J. C. F., & Panison, F. (2013). Plantio cruzado na cultura da soja utilizando uma cultivar de hábito de crescimento indeterminado. Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences, 56(4), 319-325.

de Química, C. C., & do Solo, F. (2016). Manual de calagem e adubação para os Estados de Rio Grande do Sul e de Santa Catarina. Viçosa, Sociedade Brasileira de Ciência do Solo. 376p, https://www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf.

Devi, J. M., Sinclair, T. R., Chen, P., & Carter, T. E. (2014). Evaluation of elite southern maturity soybean breeding lines for drought‐tolerant traits. Agronomy Journal, 106(6), 1947-1954.

Falker Automação Agrícola. (2008). Manual do medidor eletrônico de teor clorofila (ClorofiLOG/CFL 1030).

Fehr, W. R., Caviness, C. E. Stages of soybean development. Ames: lowa State University of Science and Technology. 11 p.

Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Spec. Rep. 80. Iowa Agric. Home Econ. Exp. Stn., Iowa State Univ., Ames.

Ferreira, A. S., Zucareli, C., Werner, F., & Balbinot Junior, A. A. (2018). Plant spatial arrangement affects grain production from branches and stem of soybean cultivars. Bragantia, 77, 567-576.

Foo, E., Yoneyama, K., Hugill, C. J., Quittenden, L. J., & Reid, J. B. (2013). Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular plant, 6(1), 76-87.

Kumagai, E., & Takahashi, T. (2020). Soybean (Glycine max (L.) Merr.) Yield reduction due to late sowing as a function of radiation interception and use in a cool region of Northern Japan. Agronomy, 10(1), 66.

Lee, C. D., Egli, D. B., & TeKrony, D. M. (2008). Soybean response to plant population at early and late planting dates in the Mid‐South. Agronomy Journal, 100(4), 971-976.

Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., ... & Fu, X. (2018). Modulating plant growth–metabolism coordination for sustainable agriculture. Nature, 560(7720), 595-600.

Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, cell & environment, 29(3), 315-330.Marcos Filho, J. Fisiologia de sementes de plantas cultivadas. Londrina: ABRATES, 659 p, 2015.

Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., & Du, X. (2019). Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 9(1), 105.

Marcos Filho, J. (2015). Seed vigor testing: an overview of the past, present and future perspective. Scientia agricola, 72, 363-374.

Modolo, A. J., Schidlowski, L. L., Storck, L., Benin, G., Vargas, T. O., & Trogello, E. (2016). Rendimento de soja em função do arranjo de plantas. Revista de Agricultura, 91(3), 216-229.

Pedó, T., Koch, F., Martinazzo, E. G., Villela, F. A., & Aumonde, T. Z. (2015). Physiological attributes, growth and expression of vigor in soybean seeds under soil waterlogging. African Journal of Agricultural Research, 10(39), 3791-3797.

Petter, F. A., Silva, J. A. D., Zuffo, A. M., Andrade, F. R., Pacheco, L. P., & Almeida, F. A. D. (2016). Elevada densidade de semeadura aumenta a produtividade da soja? Respostas da radiação fotossinteticamente ativa. Bragantia, 75, 173-183.

Sinclair, T. R. (2018). Effective water use required for improving crop growth rather than transpiration efficiency. Frontiers in Plant Science, 9, 1442.

Sobko, O., Hartung, J., Zikeli, S., Claupein, W., & Gruber, S. (2019). Effect of sowing density on grain yield, protein and oil content and plant morphology of soybean (Glycine max L. Merrill). Plant, Soil and Environment, 65(12), 594-601.

SOLOS, Embrapa. Sistema brasileiro de classificação de solos. Centro Nacional de Pesquisa de Solos: 3, 2013.

Song, H., Taylor, D. C., & Zhang, M. (2023). Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. International Journal of Molecular Sciences, 24(3), 2256.

Uate, J. V. (2016). Progresso genético e adaptabilidade e estabilidade de cultivares de milho avaliadas em ensaios de valor de cultivo e uso (Doctoral dissertation, Tese (Doutorado em Genética e Melhoramento de Plantas). Universidade Federal de Lavras, 77p.

Valliyodan, B., Ye, H., Song, L., Murphy, M., Shannon, J. G., & Nguyen, H. T. (2017). Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. Journal of experimental botany, 68(8), 1835-1849.

Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R. K., & Nguyen, H. T. (2018). Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 69(13), 3267-3277.

Published

24/05/2023

How to Cite

PETER, M. .; DALLMANN, M. M. .; PEDÓ, T.; AUMONDE, T. Z. .; BARBOSA, B. S. .; MEDEIROS, L. B. .; PIMENTEL , J. R. . Ecophysiology of soybean in response to different sowing times and crop densities. Research, Society and Development, [S. l.], v. 12, n. 5, p. e24212541765, 2023. DOI: 10.33448/rsd-v12i5.41765. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41765. Acesso em: 28 apr. 2024.

Issue

Section

Agrarian and Biological Sciences