Al2(SO4)3 alters the antioxidant mitochondrial metabolism of Botritys cinerea and optimizes the production of cellulose and oxidative degrading enzymes

Authors

DOI:

https://doi.org/10.33448/rsd-v12i8.42996

Keywords:

Oxidative stress; Mitochondrial coupling; Catalase; Peroxidase; Botritys cinerea.

Abstract

The enzymes produced by pathogenic fungi, especially Botritys cinerea, deserve specific attention due to the diversity of their applications, mainly in biofuel production, food processing, and the pharmaceutical industry. Thus, this work used Al2(SO4)3 as a stressor in order to evaluate if the stress levels caused by the concentrations of 100, 250, 500, and 1000 ppm were sufficient to increase the production of hydrolytic cellulolytic enzymes (FPase, CMCase, Avicelase, β-glucosidase, xylanase) and oxidative (laccase and manganese peroxidase). The study also evaluated the stress levels in previously treated mycelia of B. cinerea and whether they corresponded to the different states of mitochondrial respiration. Our study indicates that Al2(SO4)3 increased the production of cellulolytic and oxidative enzymes in all concentrations in a dose-dependent manner and that Al2(SO4)3 alters the mitochondrial respiratory rate, with lower ATP productions, indicating that less-coupled mitochondria were obtained and that this may be due to the increase of oxidative stress. Thus, it is plausible to suggest the use of Al2(SO4)3 in the production of cellulolytic enzymes, which could be used in the hydrolysis stage of second-generation ethanol production processes, as it reduces the time required for enzymatic expression applications in industrial processes.

References

Abdel-Fatah, O. M., Hassan, M. M., Elshafei, A. M., Haroun, B. M., Atta, H. M., & Othman, A. M. (2012). Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Brazilian Journal of Microbiology, 43(1), 1–11. https://doi.org/10.1590/S1517-83822012000100001

Acharya, S., & Chaudhary, A. (2011). Effect of nutritional and environmental factors on cellulases activity by thermophilic bacteria isolated from hot spring. J. Of sci. Ind, 70, 142–148.

Acharya, Somen, & Chaudhary, A. (2012). Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Brazilian archives of biology and technology, 55(4), 497–503. https://doi.org/10.1590/s1516-89132012000400003

Aebi H. (1984). Catalase in vitro. Methods in enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

Alfenas, A. C., & Mafia, R. G. (2007). Métodos em Fitopatologia. UFV.

Aguiar, A., & Ferraz, A. (2011). Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicações tecnológicas correlatas. Química nova. https://doi.org/10.1590/s0100-40422011001000006

Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2009). Class III peroxidases in plant defense reactions. Journal of Experimental Botany, 60(2), 377–390. https://doi.org/10.1093/jxb/ern277

Alonso-Monge, R., Román, E., Arana, D. M., Pla, J., & Nombela, C. (2009). Fungi sensing environmental stress. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 15 Suppl 1, 17–19. https://doi.org/10.1111/j.1469-0691.2008.02690.x

Anahid, S., Yaghmaeia, S., & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Sci. Iran, 18(3), 502–508.

Azmat, R., Qamar, N., Naz, R., Uddin, F., & Kamal, M. (2015). Aluminum induced enzymatic disorder as an important eco biomarker in seedlings of Lens culinaris medic. Pak. J. Bot, 47(1), 89–93.

Bai, Z., Harvey, L. M., & McNeil, B. (2003). Oxidative stress in submerged cultures of fungi. Critical Reviews in Biotechnology, 23(4), 267–302. https://doi.org/10.1080/07388550390449294

Bracht, A., Suzuki-Kemmelmeier, F., Salgueiro-Pagadigorria, C. L., Constanti, J., Yamamoto, N. S., & Ishii-Iwamoto, E. L. (2003). Métodos de laboratório em Bioquímica.

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999

Breitenbach, M., Weber, M., Rinnerthaler, M., Karl, T., & Breitenbach-Koller, L. (2015). Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules, 5(2), 318–342. https://doi.org/10.3390/biom5020318

Brown, D. W., Butchko, R., Busman, M., & Proctor, R. H. (2007). The Fusarium verticillioides FUM gene cluster encodes a Zn(II) 2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot. Cell, 6, 1210–1218.

Butler, G., Rasmussen, M. D., Lin, M. F., Santos, M. A. S., Sakthikumar, S., Munro, C. A., Rheinbay, E., Grabherr, M., Forche, A., Reedy, J. L., Agrafioti, I., Arnaud, M. B., Bates, S., Brown, A. J. P., Brunke, S., Costanzo, M. C., Fitzpatrick, D. A., de Groot, P. W. J., Harris, D., & Cuomo, C. A. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 459(7247), 657–662. https://doi.org/10.1038/nature08064

Chance, B., & Willium, G. R. (1955). Respiration enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem, 217, 383–393.

Coston, M. B., & Loomis, W. F., Jr. (1969). Isozymes of β-glucosidase in Dictyostelium discoideum. Journal of Bacteriology, 100(3), 1208–1217. https://doi.org/10.1128/jb.100.3.1208-1217.1969

Damiano, V. B., Bocchini, D. A., Gomes, E., & Dasilva, R. (2003). Aplication of crude xylanase from Bacillus licheniformis 77-2 to the bleaching of eukalyptus Kraft polp. World J. Microbiol. Biotechnol, 19, 139–144.

Dashtban, M., Maki, M., Leung, K. T., Mao, C., & Qin, W. (2010). Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 30(4), 302–309. https://doi.org/10.3109/07388551.2010.490938

Duangmal, K., & Apenten, R. (1999). A comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chemistry. 64, 351–359.

Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155–177. https://doi.org/10.1111/j.1365-3059.2006.01348.x

Estabrook, R. W. (1967). Mitochondrial respiratory control and the polarographie measurement of ADP: O ratios. Em RW.

Ferreira, D., da Motta, A. C., Kreutz, L. C., Toni, C., Loro, V. L., & Barcellos, L. J. G. (2010). Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere, 79(9), 914–921. https://doi.org/10.1016/j.chemosphere.2010.03.024

Fountain, J. C., Bajaj, P., Nayak, S. N., Yang, L., Pandey, M. K., Kumar, V., Jayale, A. S., Chitikineni, A., Lee, R. D., Kemerait, R. C., Varshney, R. K., & Guo, B. (2016). Responses of Aspergillus flavus to oxidative stress are related to fungal development regulator, antioxidant enzyme, and secondary metabolite biosynthetic gene expression. Frontiers in Microbiology, 7, 2048. https://doi.org/10.3389/fmicb.2016.02048

Garzón, T., Gunsé, B., Moreno, A. R., Tomos, A. D., Barceló, J., & Poschenrieder, C. (2011). Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Science: An International Journal of Experimental Plant Biology, 180(5), 709–715. https://doi.org/10.1016/j.plantsci.2011.01.022

Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268. https://doi.org/10.1351/pac198759020257

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314. https://doi.org/10.1104/pp.59.2.309

Hillmann, F., Shekhova, E., & Kniemeyer, O. (2015). Insights into the cellular responses to hypoxia in filamentous fungi. Current Genetics, 61(3), 441–455. https://doi.org/10.1007/s00294-015-0487-9

Ishii-Iwamoto, E. L., Coelho, E. M. P., Reis, B., Moscheta, I. S., & Bonato, C. M. (2012). Effects of monoterpenes on physiological processes during seed germination and seedling growth. Current bioactive compounds, 8(1), 50–64. https://doi.org/10.2174/157340712799828223

Jackson, C., Dench, J. E., Hall, D. O., & Moore, A. L. (1979). Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation. Plant Physiology, 64(1), 150–153. https://doi.org/10.1104/pp.64.1.150

Kamidai, H. M., Durranti, L. R., Monteiro, R. T. R, & Eduardo Dutra De, A., Ii. (2005). Biodegradation Of Textile Effluents By Pleurotus Sajor- Caju. Quím. Nova, 28(4), 629–632.

Kuwahara, M., Glenn, J. K., Morgan, M. A., & Gold, M. H. (1984). Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett, 169, 247–250.

Larkin, P. J. (1987). Calmodulin levels are not responsible for aluminum tolerance in wheat. Aust. J. Plant. Physiol, 14, 377–385.

Maheshwari, R., & Navaraj, A. (2008). Senescence in fungi: the view from Neurospora: Senescence in Neurospora. FEMS Microbiology Letters, 280(2), 135–143. https://doi.org/10.1111/j.1574-6968.2007.01027.x

Malekpouri, M., Ehsanpour, M., & Afkhami, M. (2012). Metal Levels in Airborne Particulate Matter in Industrial Area of Bandar Abbas, Iran. Euro. J. Exp. Bio, 2(5), 1714–1717.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem, 31, 426–428.

Montibus, M., Pinson-Gadais, L., Richard-Forget, F., Barreau, C., & Ponts, N. (2015). Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Critical Reviews in Microbiology, 41(3), 295–308. https://doi.org/10.3109/1040841X.2013.829416

Nikolaou, E., Agrafioti, I., Stumpf, M., Quinn, J., Stansfield, I., & Brown, A. J. P. (2009). Phylogenetic diversity of stress signalling pathways in fungi. BMC Evolutionary Biology, 9(1), 44. https://doi.org/10.1186/1471-2148-9-44

Pecci, L., Montefoschi, G., Fontana, M., & Cavallini, D. (1994). Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level. Biochemical and Biophysical Research Communications, 199(2), 755–760. https://doi.org/10.1006/bbrc.1994.1293

Pergo, E. M., & Ishii-Iwamoto, E. L. (2011). Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. Journal of Chemical Ecology, 37(5), 500–513. https://doi.org/10.1007/s10886-011-9945-0

Pradeep, M. R., & Narasimha, G. (2011). Utilization of pea seed husk as a substrate for cellulase production by mutant Aspergillus niger. Insight biotechnology, 1(2), 17–22. https://doi.org/10.5567/ibiot-ik.2011.17.22

Puntarullo, S., Sanchez, R. A., & Boveris, A. (1988). Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol, 86, 626–630.

Putter, J. (1974). Methods of Enzymatic Analysis (H. U. Bergmeyer, Ed.). Weinhan.

Souza, L. C., Nogueira, D., Machado, L. C., Costa, T. C., Martins, J., Mendes, C., Pires, N., Neto, C., Conceição, S. S., & Brito, A. (2016). Nitrogen compounds, proteins and amino acids in corn subjected to doses of aluminum. Afr. J. Agric. Res, 11(17), 1519–1524.

Wu, J., Jiang, Z., Liu, M., Gong, X., Wu, S., Burns, C. M., & Li, Z. (2009). Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry, 48, 2012–2020.

Zandi, P., & Schnug, E. (2022). Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology, 11(2), 155. https://doi.org/10.3390/biology11020155

Zucker, M. (1965). Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol, 40, 779–784.

Downloads

Published

27/08/2023

How to Cite

OLIVEIRA, M. de .; SILVA, C. B. da .; HELM, C. V. .; ZANONI, P. R. S. .; AUER, C. G. .; MIGUEL, M. D. . Al2(SO4)3 alters the antioxidant mitochondrial metabolism of Botritys cinerea and optimizes the production of cellulose and oxidative degrading enzymes . Research, Society and Development, [S. l.], v. 12, n. 8, p. e14412842996, 2023. DOI: 10.33448/rsd-v12i8.42996. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/42996. Acesso em: 18 nov. 2024.

Issue

Section

Agrarian and Biological Sciences