An application of SPI (Standardized Precipitation Index) to monthly rainfall data in Pernambuco between 1991-2019

Authors

DOI:

https://doi.org/10.33448/rsd-v12i9.43217

Keywords:

Standardized Precipitation Index (SPI); Climate variability; Stations; Pernambuco.

Abstract

The determination and classification of regions prone to critical weather events, both intense rainfall and drought periods, are of utmost importance in the context of climate variability. In the Brazilian Northeast, a semi-arid region, drought is a recurring problem, while intense weather events such as heavy rains and landslides affect metropolitan areas and cause disasters. The state of Pernambuco shows a trend of extreme weather events, with long periods of drought and intense rainfall, which is responsible for numerous natural disasters in the state. The objective of this study was to analyze and classify, in an objective manner, the climate variability between 1991 and 2019 in the five stations of Pernambuco represented by Recife, Palmares, Itaíba, Salgueiro, and Petrolina, based on different time scales (1, 3, 6, 9, 12, 24, and 36 months). For this purpose, the Standardized Precipitation Index (SPI) was used, developed to classify dry and wet conditions according to severity. Through the analysis, it was observed that the smaller scales SPI-1 and SPI-3 revealed the onset and trajectory of each event, while the other scales identified the most intense and prolonged events. The results obtained indicated that drought periods had longer duration and intensity, with the driest month in Itaíba being -4.416 (SPI-3) in August 2018. However, rainy periods occurred more frequently in the stations, with the wettest month being in Palmares with 2.928 (SPI-3) in September 2000.

Author Biography

Sílvio Fernando Alves Xavier Júnior, Universidade Estadual da Paraíba

Licenciado em Matemática (UFPE). Possui Mestrado em Biometria e Estatísitica Aplicada (UFRPE). Doutorado em Biometria e Estatística Aplicada (UFRPE). Realizou estágio sanduíche na Texas A & M University (duração de 6 meses), United States, Biological and Agricultural Engineering Department. Coordenador do curso de Estatística (CCT/UEPB), presidente do colegiado do curso de Estatística. Membro do PROFMAT - UEPB. Áreas de interesse: Estatística Aplicada, Probabilidade e Inferência Estatística, MF-DFA, Markov Chain, PSO, Entropia e Análise de Tendências.

References

Abramowitz, M. & Stegun, I. A. (1965). Handbook of Mathematical Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York, USA.

Alcântara, L. R. P., Silva, M. E. R., Santos Neto, S. M., Lafayette, F. B., Coutinho, A. P., Montenegro, S. M. G. L., & Antonino, A. C. D. (2020). Mudanças climáticas e tendências do regime pluviométrico do Recife. Research, Society and Development, 9(3), e178932583-e178932583.

APAC. (2023). APAC Meteorologia. Agência Pernambucana de águas e Clima (APAC). http://old.apac.pe.gov.br/meteorologia/estacoes-do-ano.php?estacao=primavera#:~:text=As%20temperaturas%20m%C3%A9dias%20s%C3%A3o%20de,Zona%20da%20Mata%20e%20Litoral

Banco Mundial. (2010). Avaliação de Perdas e Danos: Inundações Bruscas em Pernambuco; Banco Mundial: Davos, Switzerland.

Barros, V. da S., Gomes, V. K. I., Silva Júnior, I. B., Silva, A. S. V., Silva, A. S. A., Bejan, L. B., & Stosic, T. (2021). Análise de tendência do índice de precipitação padronizado em Recife–PE. Research, Society and Development, 10(8), e52310817458-e52310817458.

Carmo, M. V. N. S. (2018). Análise e previsão estatística do Índice de Precipitação Padronizada (SPI) para o Nordeste do Brasil. Dissertação de Mestrado em Tecnologia Ambiental e Recursos Hídricos, Publicação PTARH.DM-206/2018, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF.

Correia, F. W. L. F. (2014). Modelos de Dispersão Para Extremos de Precipitação, Estudo de Caso: O Nordeste do Brasil.Universidade Federal do Rio Grande do Norte, Natal, Brazil, Ph.D. Thesis.

Espinoza, N. S., Santos, C. A. C., Silva, M. T., Gomes, H. B., Ferreira, R. R., Silva, M. L., Santos & Silva, C. M., Oliveira, C. P., Medeiros, J. & Giovannettone, J. (2021). Deslizamentos de terra desencadeados pelo evento de precipitação extrema de maio de 2017 na costa leste do nordeste do Brasil. Atmosfera 2021. 12, 1261.

Fernandes, D., Heinemann, A. B., Paz, R. L., Amorim, A. O., & Cardoso, A. P. (2009). Índices para a Quantificação da Seca. Embrapa Arroz e Feijão. Santo Antônio de Goiás, doc. 244, p. 48.

GPCC.(2022).Global Precipitation Climatology Centre.https://www.psl.noaa.gov/data/gridded/data.gpcc.html

Guedes, R. V. S. (2016). Análise e previsão de eventos críticos de precipitação com base no SPI e em redes neurais artificiais para o estado de Pernambuco.

Inocêncio, T. D. M. (2019). Avaliação de eventos extremos de Seca no Estado de Pernambuco (Master's thesis, Universidade Federal de Pernambuco).

Kayano, M. T., & Andreoli, R. V. (2009). Variabilidade decenal e multidecenal. Cavancanti, I.; Ferreira, N.; Silva, MGJ da, 375-383.

Lacerda, F. F. (2015). Tendências de temperatura e precipitação e cenários de mudanças climáticas de longo prazo no nordeste do Brasil e em ilhas oceânicas. Ph.D. Thesis.

Marengo, J. A., Alves, L. M., Beserra, E. A., & Lacerda, F. F. (2011). Variabilidade e mudanças climáticas no semiárido brasileiro. Recursos hídricos em regiões áridas e semiáridas. 1, 385-422.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology. 17(22), 179-183.

METSUL.(2022). METSUL Meteorologia. O Desastre de Pernambuco em Imagens. https://metsul.com/o-desastre-da-chuva-em-pernambuco-em-imagens/

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.

Silva, A. S. A., Menezes, R. S. C., & Stosic, T. (2021). Análise multifractal do índice de precipitação padronizado. Research, Society and Development, 10(7), e24710716535-e24710716535.

Thom, H. C. S. (1966). Some methods of climatological analysis. 81, 53. Geneva: Secretariat of the World Meteorological Organization.

Silva, T. R. B. F., Santos, C. A. C. D., Silva, D. J. F., Santos, C. A. G., da Silva, R. M., & de Brito, J. I. B. (2022). Climate indices-based analysis of rainfall spatiotemporal variability in Pernambuco State, Brazil. Water. 14(14), 2190.

Silva, I. A. S. (2019). Conexões entre clima e desertificação: trajetórias e suscetibilidade no nordeste brasileiro. Revista Equador. 8(2), 468–488.

Wang, W. T., Guo, W. Y., Jarvie, S., Serra-Diaz, J. M., & Svenning, J. C. (2022). Anthropogenic climate change increases vulnerability of Magnolia species more in Asia than in the Americas. Biological Conservation. 265, 109425.

Published

18/09/2023

How to Cite

FELIPE, V. F. .; SANTOS, J. V. dos .; BARBOSA, N. F. M. .; XAVIER, E. F. M. .; XAVIER JÚNIOR, S. F. A.; JALE, J. da S. . An application of SPI (Standardized Precipitation Index) to monthly rainfall data in Pernambuco between 1991-2019. Research, Society and Development, [S. l.], v. 12, n. 9, p. e8912943217, 2023. DOI: 10.33448/rsd-v12i9.43217. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43217. Acesso em: 22 nov. 2024.

Issue

Section

Exact and Earth Sciences