Potential application of geopolymers in the immobilization of heavy metals: A decade in review

Authors

DOI:

https://doi.org/10.33448/rsd-v12i9.43233

Keywords:

Bibliometric review; Geopolymeric processes; Mining waste; Alkali activation; Toxic metals.

Abstract

Reducing the carbon footprint of building materials can be exploited by recycling mining by-products into different applications, which will preserve natural resources and lessen environmental problems. The bibliometric review aims to summarize the main studies on geopolymers, using geopolymerization as a form of immobilization/solidification and adsorption of heavy metals contained in these residues. With the intention of technical feasibility, a bibliometric review of the literature published between 2011 and 2020 was carried out to critically analyze the structural chemistry, synthesis and environmental applications of geopolymers and to exhaustively discuss the experimental results. The aim is also to critically evaluate the different isothermal and kinetic models to illustrate the mechanisms for effective waste management strategies of different geopolymer binders by thermodynamic spontaneous, endothermic and entropy driven metal trapping process. Emphasizing that the process of immobilization/solidification and adsorption of heavy metals are completely different processes. It presents 86 studies of precursors used for the production of geopolymeric cement, such as metakaolin, blast furnace slag, fly ash and mining residue, including kaolin, aluminum, iron and manganese. The refinement of these articles occurred through the Scopus, VOSviewer and Mendeley platform. To get to the issues that need further investigation, therefore, it has been determined that the issue of “immobilization” needs more attention. Existing studies have revealed the excellent mechanical properties and durability of concretes, mortars and geopolymeric pastes and have predicted their wide application perspective in the field of heavy metal retention.

References

Agência Brasil. (2021). Produção do setor mineral cresce 15 no primeiro trimestre. https://agenciabrasil.ebc.com.br/economia/noticia/2021-04/producao-do-setor-mineral-cresce-15-no-primeiro-trimestre.

Abdullah, M. M. A., Hussin, K., Bnhussain, M., Ismail, K. N., & Ahmad, M. I. (2011). Chemical reactions in the geopolymerisation process using fly ash–based geopolymer: A review. Australian J. Basic Appl. Sci., 5, 1199-1203.

Ahmed, M. J. K., & Ahmaruzzaman, M. J. J. O. W. P. E. (2016). A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering, 10, 39-47.

Bitencourt, C. S., Teider, B. H., Gallo, J. B., & Pandolfelli, V. C. (2012). A geopolimerização como técnica para a aplicação do resíduo de bauxita. Cerâmica, 58, 20-28.

Chen, J., Wang, Y., Zhou, S., & Lei, X. (2017). Reduction/immobilization processes of hexavalent chromium using metakaolin-based geopolymer. Journal of environmental chemical engineering, 5(1), 373-380.

Chen, S., Ren, D., Liu, L. K., Luo, J., & Yang, G. L. (2019). Sintering of metakaolin‐based Na/Ca‐geopolymers and their immobilization of Cs. Journal of the American Ceramic Society, 102(12), 7125-7136.

Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., & Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, 90-96.

Cuccia, V., Freire, C. B., & Ladeira, A. C. Q. (2020). Radwaste oil immobilization in geopolymer after non-destructive treatment. Progress in Nuclear Energy, 122, 103246.

da Silveira Guedes, V. L. (2012). A bibliometria e a gestão da informação e do conhecimento científico e tecnológico: uma revisão da literatura. PontodeAcesso, 6(2), 74-109.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: the current state of the art. Journal of materials science, 42, 2917-2933.

El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I., & Khalili, F. (2015). Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. International journal of mineral processing, 137, 34-42.

El-eswed, B. I. (2020). Chemical evaluation of immobilization of wastes containing Pb, Cd, Cu and Zn in alkali-activated materials: A critical review. Journal of Environmental Chemical Engineering, 8(5), 104194.

El-Naggar, M. R. (2014). Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of 60Co radionuclide. Journal of nuclear materials, 447(1-3), 15-21.

Falah, M., Obenaus-Emler, R., Kinnunen, P., & Illikainen, M. (2020). Effects of activator properties and curing conditions on alkali-activation of low-alumina mine tailings. Waste and Biomass Valorization, 11(9), 5027-5039.

Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., & Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, 90-96.

Duan, P., Yan, C., Zhou, W., & Ren, D. (2016). Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu (II) from wastewater. Ceramics International, 42(12), 13507-13518.

Fernández-Pereira, C., Luna-Galiano, Y., Pérez-Clemente, M., Leiva, C., Arroyo, F., Villegas, R., & Vilches, L. F. (2018). Immobilization of heavy metals (Cd, Ni or Pb) using aluminate geopolymers. Materials Letters, 227, 184-186.

Figueiredo, R. A., Brandão, P. R., Soutsos, M., Henriques, A. B., Fourie, A., & Mazzinghy, D. B. (2021). Producing sodium silicate powder from iron ore tailings for use as an activator in one-part geopolymer binders. Materials Letters, 288, 129333.

Galiano, Y. L., Pereira, C. F., & Vale, J. (2011). Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Journal of hazardous materials, 185(1), 373-381.

Ge, Y., Yuan, Y., Wang, K., He, Y., & Cui, X. (2015). Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. Journal of hazardous materials, 299, 711-718.

Ge, Y., Yuan, Y., Wang, K., He, Y., & Cui, X. (2015). Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. Journal of hazardous materials, 299, 711-718.

Guo, B., Liu, B., & Zhang, S. G. (2017). Using coal fly ash-based geopolymer to immobilize Cd from lead fuming furnace slag. Rare Metals, 1-5.

Guo, B., Liu, B., Volinsky, A. A., Fincan, M., Du, J., & Zhang, S. (2017). Immobilization mechanism of Pb in fly ash-based geopolymer. Construction and building materials, 134, 123-130.

Haddad, M. A., Ofer-Rozovsky, E., Bar-Nes, G., Borojovich, E. J. C., Nikolski, A., Mogiliansky, D., & Katz, A. (2017). Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization. Journal of Nuclear Materials, 493, 168-179.

Hardjito, Djwantoro and Rangan, Vijaya. 2005. Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete.: Curtin University of Technology.

Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., & Ceder, G. (2011). Data mined ionic substitutions for the discovery of new compounds. Inorganic chemistry, 50(2), 656-663.

Heah, C. Y., Kamarudin, H., Al Bakri, A. M., Bnhussain, M., Luqman, M., Nizar, I. K., & Liew, Y. M. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 35, 912-922.

Huang, T., Zhou, L., Chen, L., Liu, W., Zhang, S., & Liu, L. (2020). Mechanism exploration on the aluminum supplementation coupling the electrokinetics-activating geopolymerization that reinforces the solidification of the municipal solid waste incineration fly ashes. Waste Management, 103, 361-369.

Jang, J. G., Park, S. M., & Lee, H. K. (2016). Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. Journal of hazardous materials, 318, 339-346.

Ji, Z., & Pei, Y. (2019). Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals. Chemosphere, 225, 579-587.

Ji, Z., & Pei, Y. (2020). Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO43-and Cr2O72-) in wastes-based geopolymer. Journal of hazardous materials, 384, 121290.

Ji, Z., Su, L., & Pei, Y. (2020). Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers. Materials Chemistry and Physics, 242, 122535.

Jin, M. T., Jin, Z. F., & Huang, C. J. (2011). Immobilization of heavy metal Pb2+ with geopolymer. Huan Jing ke Xue= Huanjing Kexue, 32(5), 1447-1453.

Kamseu, E., Nait-Ali, B., Bignozzi, M. C., Leonelli, C., Rossignol, S., & Smith, D. S. (2012). Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. Journal of the European Ceramic Society, 32(8), 1593-1603.

Kastiukas, G., Zhou, X., & Castro-Gomes, J. (2017). Preparation conditions for the synthesis of alkali-activated binders using tungsten mining waste. Journal of Materials in Civil Engineering, 29(10), 04017181.

Kaur, K., Singh, J., & Kaur, M. (2018). Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator. Construction and Building Materials, 169, 188-192.

Kaze, R. C., à Moungam, L. B., Djouka, M. F., Nana, A., Kamseu, E., Melo, U. C., & Leonelli, C. (2017). The corrosion of kaolinite by iron minerals and the effects on geopolymerization. Applied Clay Science, 138, 48-62.

Khater, H. M., & Ghareib, M. (2021). Utilization of alkaline Aluminosilicate activation in heavy metals immobilization and producing dense hybrid composites. Arabian Journal for Science and Engineering, 46, 6333-6348.

Kim, B., Lee, J., Kang, J., & Um, W. (2021). Development of geopolymer waste form for immobilization of radioactive borate waste. Journal of Hazardous Materials, 419, 126402.

Komnitsas, K., Zaharaki, D., & Bartzas, G. (2013). Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Applied clay science, 73, 103-109.

Kryvenko, P., Cao, H., Petropavlovskyi, O., Weng, L., & Kovalchuk, O. (2016). Applicability of alkali-activated cement for immobilization of low-level radioactive waste in ion-exchange resins. Восточно-Европейский журнал передовых технологий, 1(6 (79)), 40-45.

Kumar, M., Furumai, H., Kasuga, I., & Kurisu, F. (2020). Metal partitioning and leaching vulnerability in soil, soakaway sediments, and road dust in the urban area of Japan. Chemosphere, 252, 126605.

Kupwade-Patil, K., Allouche, E. N., Islam, M. R., & Gunasekaran, A. (2014). Encapsulation of solid waste incinerator ash in geopolymer concretes and its applications. ACI Materials Journal, 111(6), 691.

Kürklü, G., & Görhan, G. (2019). Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Construction and Building Materials, 217, 498-506.

Lee, B., Kim, G., Kim, R., Cho, B., Lee, S., & Chon, C. M. (2017). Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Construction and Building Materials, 151, 512-519.

Lee, S., Van Riessen, A., Chon, C. M., Kang, N. H., Jou, H. T., & Kim, Y. J. (2016). Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. Journal of hazardous materials, 305, 59-66.

Li, Y., Min, X., Ke, Y., Liu, D., & Tang, C. (2019). Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Management, 83, 202-208.

Li, Z., Nagashima, M., & Ikeda, K. (2018). Treatment Technology of Hazardous Water Contaminated with Radioisotopes with Paper Sludge Ash-Based Geopolymer—Stabilization of Immobilization of Strontium and Cesium by Mixing Seawater. Materials, 11(9), 1521.

Liu, D. G., Ke, Y., Min, X. B., Liang, Y. J., Wang, Z. B., Li, Y. C., ... & Jiang, G. H. (2019). Cotreatment of MSWI fly ash and granulated lead smelting slag using a geopolymer system. International journal of environmental research and public health, 16(1), 156.

Liu, X., Ding, Y., & Lu, X. (2017). Immobilization of simulated radionuclide 90Sr by fly ash-slag-metakaolin–based geopolymer. Nuclear Technology, 198(1), 64-69.

Lopes, L. M. N. (2016). O rompimento da barragem de Mariana e seus impactos socioambientais. Sinapse Múltipla, 5(1), 1-1.

Luo, Y., Bao, S., Zhang, Y., & Yuan, Y. (2019). Recycling vanadium-bearing shale leaching residue for the production of one-part geopolymers. Materials Research Express, 6(10), 105203.

Luo, Z. Q., Liu, S. Q., Zhang, Z. S., Zhou, X. T., & Xia, J. P. (2014). Geopolymer materials treatment of calcium arsenate waste for arsenic immobilization. Advanced Materials Research, 997, 500-503.

Mast, B., Cambriani, A., Douvalis, A. P., Pontikes, Y., Schroeyers, W., Vandoren, B., & Schreurs, S. (2020). The effect of high dose rate gamma irradiation on the curing of CaO-FexOy-SiO2 slag based inorganic polymers: Mechanical and microstructural analysis. Journal of Nuclear Materials, 539, 152237.

Mello, G., Oliveira, A. L. M., Guidolin, A. P., Caso, C., David, G., Nascimento, J. C., & SEIXAS, T. (2020). A coronacrise: natureza, impactos e medidas de enfrentamento no Brasil e no mundo. Nota do Cecon, 9, 1-23.

Minelli, M., Medri, V., Papa, E., Miccio, F., Landi, E., & Doghieri, F. (2016). Geopolymers as solid adsorbent for CO2 capture. Chemical Engineering Science, 148, 267-274.

Moncea, A. M., Georgescu, M., Melinescu, A., Stoleriu, S., & Moncea, A. (2012). Hardening processes and hydrates in alkali-activated slag and geopolymer with Pb content. Revista Romana de Materiale, 42(4), 356-363.

Mourak, A., Hajjaji, M., & Alagui, A. (2021). Cured alkali-activated heated clay-cellulose composites: Microstructure, effect of glass addition and performances. Boletín de la Sociedad Española de Cerámica y Vidrio, 60(1), 62-72.

Muhammad, F., Xia, M., Li, S., Yu, X., Mao, Y., Muhammad, F., ... & Li, D. (2019). The reduction of chromite ore processing residues by green tea synthesized nano zerovalent iron and its solidification/stabilization in composite geopolymer. Journal of Cleaner Production, 234, 381-391.

Nasvi, M. C. M., Ranjith, P. G., & Sanjayan, J. (2013). The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells. Applied energy, 102, 1391-1398.

Nikolić, V., Komljenović, M., Džunuzović, N., & Miladinović, Z. (2018). The influence of Pb addition on the properties of fly ash-based geopolymers. Journal of Hazardous Materials, 350, 98-107.

Ofer-Rozovsky, E., Haddad, M. A., Bar-Nes, G., Borojovich, E. J. C., Binyamini, A., Nikolski, A., & Katz, A. (2019). Cesium immobilization in nitrate-bearing metakaolin-based geopolymers. Journal of Nuclear Materials, 514, 247-254.

Ojovan, M. I., Varlackova, G. A., Golubeva, Z. I., & Burlaka, O. N. (2011). Long-term field and laboratory leaching tests of cemented radioactive wastes. Journal of hazardous materials, 187(1-3), 296-302.

Onutai, S., Jiemsirilers, S., & Kobayashi, T. (2020). Geopolymer sourced with fly ash and industrial aluminum waste for sustainable materials. In Waste Management: Concepts, Methodologies, Tools, and Applications (pp. 676-696). IGI Global.

Pandey, B., Kinrade, S. D., & Catalan, L. J. (2012). Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. Journal of environmental management, 101, 59-67.

Pereira, D. M., Guimarães, H. O. R., de Freitas, S. M. C., & Mầngia, A. A. M. (2020). Brumadinho: Muito mais que um desastre tecnológico. Revista da Universidade Federal de Minas Gerais, 27(2), 332-355.

Ren, B., Zhao, Y., Bai, H., Kang, S., Zhang, T., & Song, S. (2021). Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere, 267, 128900.

Runtti, H., Luukkonen, T., Niskanen, M., Tuomikoski, S., Kangas, T., Tynjälä, P., & Lassi, U. (2016). Sulphate removal over barium-modified blast-furnace-slag geopolymer. Journal of hazardous materials, 317, 373-384.

Santa, R. A. A. B., Soares, C., & Riella, H. G. (2016). Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. Journal of hazardous materials, 318, 145-153.

Sarkar, C., Basu, J. K., & Samanta, A. N. (2018). Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for Zinc (II) removal. Advanced Powder Technology, 29(5), 1142-1152.

Shehata, N., Sayed, E. T., & Abdelkareem, M. A. (2021). Recent progress in environmentally friendly geopolymers: A review. Science of The Total Environment, 762, 143166.

Silva, I., Castro-Gomes, J. P., & Albuquerque, A. (2012). Effect of immersion in water partially alkali-activated materials obtained of tungsten mine waste mud. Construction and Building Materials, 35, 117-124.

Sitarz-Palczak, E., Kalembkiewicz, J., & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Archives of Environmental Protection, 45(1), 126-135.

Solouki, A., Viscomi, G., Lamperti, R., & Tataranni, P. (2020). Quarry waste as precursors in geopolymers for civil engineering applications: A decade in review. Materials, 13(14), 3146.

Taki, K., Mukherjee, S., Patel, A. K., & Kumar, M. (2020). Reappraisal review on geopolymer: A new era of aluminosilicate binder for metal immobilization. Environmental Nanotechnology, Monitoring & Management, 14, 100345.

Tan, Q., Li, N., Xu, Z., Chen, X., Peng, X., Shuai, Q., & Yao, Z. (2019). Comparative performance of cement and metakaolin based-geopolymer blocks for strontium immobilization. Journal of the Ceramic Society of Japan, 127(1), 44-49.

Tan, T. H., Mo, K. H., Ling, T. C., & Lai, S. H. (2020). Current development of geopolymer as alternative adsorbent for heavy metal removal. Environmental Technology & Innovation, 18, 100684.

Xu, M. X., He, Y., Wang, C. Q., He, X. F., He, X. Q., Liu, J., & Cui, X. M. (2015). Preparation and characterization of a self-supporting inorganic membrane based on metakaolin-based geopolymers. Applied Clay Science, 115, 254-259.

Zailani, W. W. A., Abdullah, M. M. A., Arshad, M. F., Burduhos-Nergis, D. D., & Tahir, M. F. M. (2020, June). Effect of iron oxide (Fe2O3) on the properties of fly ash based geopolymer. In IOP Conference Series: Materials Science and Engineering, 877(1), 012017.

Zhang, H. Y., Qiu, G. H., Kodur, V., & Yuan, Z. S. (2020). Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cement and Concrete Composites, 106, 103483.

Zhang, W., Yao, X., Yang, T., Liu, C., & Zhang, Z. (2018). Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials. Construction and Building Materials, 175, 411-421.

Zhang, X. L., Yao, A. L., & Chen, L. (2013). A Review on the Immobilization of Heavy Metals with Geopolymers. Advanced Materials Research, 634, 173-177.

Zheng, L., Wang, W., & Gao, X. (2016). Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: based on partial charge model analysis. Waste management, 58, 270-279.

Published

24/09/2023

How to Cite

GOMES, G. da S. .; VALE, S. B. do .; PICANÇO, M. de S. . Potential application of geopolymers in the immobilization of heavy metals: A decade in review . Research, Society and Development, [S. l.], v. 12, n. 9, p. e12212943233, 2023. DOI: 10.33448/rsd-v12i9.43233. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43233. Acesso em: 7 may. 2024.

Issue

Section

Review Article