Drying kinetics mathematical modeling of coffee (Coffea arabica L.) processed in different ways and with the use of enzymes and yeast

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4359

Keywords:

Coffee drying; Processing; Microorganisms

Abstract

Among all stages in the coffee production (Coffea arabica L.), post-harvest can significantly impact the final cost and product quality. Among the stages of this phase, drying is one’s that requires most care. The search for new technologies to optimize this process has been growing exponentially, a example is the use of enzymes and yeasts, which can guarantee a safer drying and even improve the quality of the bevarege. The objective of the study was to evaluate the drying behavior of coffee without changing the temperature, air flow, only changing the processing (natural and pulped natural) of the beans using the enzyme Pectinex® Ultra SPL and the yeast CA11 to observe the occurrence of some change in the drying kinetics after processing and modeling the drying kinetics, analyzing which model can more accurately predict the coffee drying. The VALCAM model was the best model to describe drying kinetics, with the highest value of determination coefficient (R2> 99.73%), lowest mean relative deviation value (P <4.43) and standard deviation of the estimate (SE <0.055). For wet processed coffees, the determination coefficients (R2) were varied between the models studied. The VALCAM model was the only one that presented the ideal values to describe the drying phenomenon with determination coefficients (R2) of 99.63%, relative average error (P) of 3.37 and standard deviation of the estimate (SE) of 0.0542.

Author Biographies

Murilo Ferraz Tosta, Universidade Federal de Lavras

Departamento de Engenharia Agrícola (DEA)

Luis Gustavo Amaral Salvio, Universidade Federal de Lavras (UFLA)

Departamento de Engenharia Agrícola (DEA)

Jefferson Luiz Gomes Corrêa, Universidade Federal de Lavras

Departamento de Ciência dos Alimentos (DCA)

Ednilton Tavares de Andrade, Universidade Federal de Lavras

Departamento de Engenharia Agrícola (DEA)

References

Agate, A. D., & Bhat, J. V. (1966). Role of pectinolytic yeasts in the degradation of mucilage layer of Coffea robusta cherries. Appl. Environ. Microbiol., 14(2), 256-260.

Alves, G. E., Borém, F. M., Isquierdo, E. P., Siqueira, V. C., Cirillo, M. Â., & Pinto, A. C. F. (2017). Physiological and sensorial quality of Arabica coffee subjected to different temperatures and drying airflows. Acta Scientiarum. Agronomy, 39(2), 225-233.

Andrade, E. T., Borém, F. M., & Hardoim, P. R. (2003). Cinética de secagem do café cereja, bóia e cereja desmucilado, em quatro diferentes tipos de terreiros. Revista Brasileira de Armazenamento (Brasil) (Especial Café-no. 7) p. 37-43.

Borém, F. M. (Ed.). (2014). Handbook of Coffee Post-harvest Technology: A Comprehensive Guide to the Processing, Drying, and Storage of Coffee. Gin Press.

Burmester, K., & Eggers, R. (2010). Heat and mass transfer during the coffee drying process. Journal of Food Engineering, 99(4), 430-436.

Coradi, P., & Borém, F. M. (2009). Alterações dos parâmetros físico químicos na qualidade de bebida do café natural e despolpado em função de diferentes tipos de secagem e condição de armazenamento. Revista Brasileira de Armazenamento, Viçosa, (11), 54-63.

Coradi, P. C., Fernandes, C. H., Helmich, J. C., & Goneli, A. L. (2016). Effects of drying air temperature and grain initial moisture content on soybean quality (Glycine max (L.) Merrill). Engenharia Agrícola, 36(5), 866-876.

Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons.

Evangelista, S. R., Silva, C. F., Cruz, M. G. P., Cordeiro, C. S, Pinheiro, A. C. M., Duarte, W. F., & Schwan, R. F. (2014). Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Research International, 61, 183-195.

Gouvêa, R. F., Leilson O. R., Soza, E. F., Penha, E. M., Matta, V. M. & Freitas, S. P. (2017). Effect of enzymatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. Journal of food science and technology. 54, 2176-2180.

Isquierdo, E. P., Borém, F. M., de Andrade, E. T., Corrêa, J. L. G., de Oliveira, P. D., & Alves, G. E. (2013). Drying kinetics and quality of natural coffee. Transactions of the ASABE, 56(3), 995-1001.

Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of food engineering, 78(1), 98-108.

Kleinwächter, M. & Selmar, D. (2010). "Influence of drying on the content of sugars in wet processed green Arabica coffees." Food Chemistry 119(2): 500-504.

Livramento, K. G., Borém, F. M., José, A. C., Santos, A. V., do Livramento, D. E., Alves, J. D., & Paiva, L. V. (2017). Proteomic analysis of coffee grains exposed to different drying process. Food chemistry, 221, 1874-1882.

Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of food engineering, 29(1), 75-97.

Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of food engineering, 66(4), 513-518.

Ondier, G. O., Siebenmorgen, T. J., & Mauromoustakos, A. (2010). Low-temperature, low-relative humidity drying of rough rice. Journal of Food Engineering, 100(3), 545-550.

Pereira, J., Queiroz, D., & Pereira, A. (1993). Equações de secagem de café em camada fina na faixa de temperaturas de 40 a 80 C. Revista Brasileira de Armazenamento, Viçosa, 18, 19.

Pereira, G. V. M, Soccol, V. T., & Soccol, C. R. (2016). Current state of research on cocoa and coffee fermentations. Current Opinion in Food Science, 7, 50-57.

Ribeiro, L. S., Miguel, M. G. D. C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J., Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 92, 26-32.

Santos, R. V., Vieira, H. D., Borém, F. M. & Isquierdo, E. P. (2014). Comparative analysis of infrastruture for processing using a decision support system for the calculation of cost of phase of post-harvest coffee. Coffee Science, 9(4), 480-488.

Saath, R., Broetto, F., Biaggioni, M. A. M., Borém, F. M., Rosa, S. D. V. F. D., & Taveira, J. H. D. S. (2014). Activity of some isoenzymatic systems in stored coffee grains. Ciência e Agrotecnologia, 38(1), 15-24.

Saath, R., Borém, F. M., Alves, E., Taveira, J. H. D. S., Medice, R., & Coradi, P. C. (2010). Microscopia eletrônica de varredura do endosperma de café (Coffea arabica L.) durante o processo de secagem. Ciência e Agrotecnologia, 34(1), 196-203.

Siqueira, V. C., Borém, F., Isquierdo, E., Alves, G., Ribeiro, D., Pinto, A. & Taveira, J. (2016). Drying of hulled naturally processed coffee with high moisture content and its impacts on quality. African Journal of Agricultural Research, Lagos, 11(31), 2903-2911.

Taveira, J. D. S., Borém, F. M., Da Rosa, S. D. V., Oliveira, P. D., Giomo, G. S., Isquierdo, E. P., & Fortunato, V. A. (2015). Post-harvest effects on beverage quality and physiological performance of coffee beans. Embrapa Café-Artigo em periódico indexado (ALICE).

Published

16/06/2020

How to Cite

TOSTA, M. F.; SALVIO, L. G. A.; CORRÊA, J. L. G.; ANDRADE, E. T. de. Drying kinetics mathematical modeling of coffee (Coffea arabica L.) processed in different ways and with the use of enzymes and yeast. Research, Society and Development, [S. l.], v. 9, n. 7, p. e908974359, 2020. DOI: 10.33448/rsd-v9i7.4359. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4359. Acesso em: 25 apr. 2024.

Issue

Section

Agrarian and Biological Sciences