Assessment of the profile of ventilatory asynchronies and demonstrations of occurrences in neurocritical individuals in the adult Intensive Care Unit of a reference hospital

Authors

DOI:

https://doi.org/10.33448/rsd-v13i1.44638

Keywords:

Physiotherapy; Mechanical ventilation; Intensive Care Unit.

Abstract

Introduction: Ventilatory asynchronies are an imbalance in coordination between the patient and the mechanical ventilator during assisted and controlled ventilation. This lack of synchrony occurs when the patient's respiratory efforts are not in harmony with the ventilator's operation or when the parameter settings are incorrect. Objective: To outline the profile of ventilatory asynchronies with greater occurrence in neurocritical care patients in an adult intensive care unit. Method: Pilot and observational study, through collection management of the TASY program and on-time results via B.I software. 47 adverse cases were analyzed, with a greater occurrence of asynchronies of insufficient flow and double triggers. Results: Early cycling and excessive flow 1%, ineffective triggering and late cycling approximately 3%, reverse triggering 7%, self-triggering 8%, insufficient flow 28% and double triggering 48%. Conclusion: It is concluded that the mechanical changes with the greatest occurrence are asynchronies of insufficient flow and double shots, with a prior future need to propose control and training measures, such as the improvement of active ventilation monitoring, as both have a classification standard relates the patient's participatory activity. In this way, intelligence technology software management was effective in profiling the asynchronies evaluated here.

References

Almeida M. R., Horta J. G. Á., de Matos N. A., de Souza A. B. F., de Freitas C. T., da Silva C. L., et al. (2020). The effects of different ventilatory modes in female adult rats submitted to mechanical ventilation. Respiratory Physiology & Neurobiology, 284(1), 103583. https: //doi: 10.1016/j.resp.2020.103583.

Appendini, L., Patessio, A., Zanaboni, S., Carone, M., Gukov, B., Donner, C. F., & Rossi, A. (1994). Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 149(5), 1069–1076. https://doi.org/10.1164/ajrccm.149.5.8173743.

Baydur, A., Behrakis, P. K., Zin, W. A., Jaeger, M., & Milic-Emili, J. (1982). A simple method for assessing the validity of the esophageal balloon technique. The American review of respiratory disease, 126(5), 788–791. https://doi.org/10.1164/arrd.1982.126.5.788

Beitler, J. R., Sands, S. A., Loring, S. H., Owens, R. L., Malhotra, A., Spragg, R. G., Matthay, M. A., Thompson, B. T., & Talmor, D. (2016). Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive care medicine, 42(9), 1427–1436. https://doi.org/10.1007/s00134-016-4423-3

Blanch, L., Villagra, A., Sales, B., Montanya, J., Lucangelo, U., Luján, M., García-Esquirol, O., Chacón, E., Estruga, A., Oliva, J. C., Hernández-Abadia, A., Albaiceta, G. M., Fernández-Mondejar, E., Fernández, R., Lopez-Aguilar, J., Villar, J., Murias, G., & Kacmarek, R. M. (2015). Asynchronies during mechanical ventilation are associated with mortality. Intensive care medicine, 41(4), 633–641. https://doi.org/10.1007/s00134-015-3692-6

Branson R. D. (2011). Patient-ventilator interaction: the last 40 years. Respiratory care, 56(1), 15–24. https://doi.org/10.4187/respcare.00937

Chanques, G., Kress, J. P., Pohlman, A., Patel, S., Poston, J., Jaber, S., & Hall, J. B. (2013). Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Critical care medicine, 41(9), 2177–2187. https://doi.org/10.1097/CCM.0b013e31828c2d7a

Chao DC, Scheinhorn DJ (2016). Ventilatory Asynchrony. Clin Chest Med. 37(4):677-86. doi: 10.1016/j.ccm.2016.06.007.

Colombo, D., Cammarota, G., Bergamaschi, V., De Lucia, M., Corte, F. D., & Navalesi, P. (2008). Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive care medicine, 34(11), 2010–2018. https://doi.org/10.1007/s00134-008-1208-3

Costa, R., Spinazzola, G., Cipriani, F., Ferrone, G., Festa, O., Arcangeli, A., Antonelli, M., Proietti, R., & Conti, G. (2011). A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive care medicine, 37(9), 1494–1500. https://doi.org/10.1007/s00134-011-2297-y

de Wit, M., Miller, K. B., Green, D. A., Ostman, H. E., Gennings, C., & Epstein, S. K. (2009). Ineffective triggering predicts increased duration of mechanical ventilation. Critical care medicine, 37(10), 2740–2745. https://doi.org/10.1097/ccm.0b013e3181a98a05

Demoule, A., Clavel, M., Rolland-Debord, C., Perbet, S., Terzi, N., Kouatchet, A., Wallet, F., Roze, H., Vargas, F., Guerin, C., Dellamonica, J., Jaber, S., Brochard, L., & Similowski, T. (2016). Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial. Intensive care medicine, 42(11), 1723–1732. https://doi.org/10.1007/s00134-016-4447-8

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Ferreira, J. C., Chipman, D. W., Hill, N. S., & Kacmarek, R. M. (2009). Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison. Chest, 136(2), 448–456. https://doi.org/10.1378/chest.08-3018

Gay, P. C., Rodarte, J. R., & Hubmayr, R. D. (1989). The effects of positive expiratory pressure on isovolume flow and dynamic hyperinflation in patients receiving mechanical ventilation. The American review of respiratory disease, 139(3), 621–626. https://doi.org/10.1164/ajrccm/139.3.621

Gong MN, Thompson BT. (2015). Patient-Ventilator Asynchrony in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 189(6):628-34. doi: 10.1164/rccm.201307-1349CI.

Gurevitch, M. J., & Gelmont, D. (1989). Importance of trigger sensitivity to ventilator response delay in advanced chronic obstructive pulmonary disease with respiratory failure. Critical care medicine, 17(4), 354–359. https://doi.org/10.1097/00003246-198904000-00011

Hubmayr RD. (1994). Setting the ventilator. In: Tobin MJ, ed. Principles and practice of mechanical ventilation. New York: McGraw-Hill. 191-206.

Luo, X. Y., He, X., Zhou, Y. M., Wang, Y. M., Chen, J. R., Chen, G. Q., Li, H. L., Yang, Y. L., Zhang, L., & Zhou, J. X. (2020). Patient-ventilator asynchrony in acute brain-injured patients: a prospective observational study. Annals of intensive care, 10(1), 144. https://doi.org/10.1186/s13613-020-00763-8

Lynch-Smith, D., Thompson, C. L., Pickering, R. G., & Wan, J. Y. (2016). Education on Patient-Ventilator Synchrony, Clinicians' Knowledge Level, and Duration of Mechanical Ventilation. American journal of critical care : an official publication, American Association of Critical-Care Nurses, 25(6), 545–551. https://doi.org/10.4037/ajcc2016623

MacIntyre, N. R., McConnell, R., Cheng, K. C., & Sane, A. (1997). Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Critical care medicine, 25(10), 1671–1677. https://doi.org/10.1097/00003246-199710000-00016

Mellott, K. G., Grap, M. J., Munro, C. L., Sessler, C. N., Wetzel, P. A., Nilsestuen, J. O., & Ketchum, J. M. (2014). Patient ventilator asynchrony in critically ill adults: frequency and types. Heart & lung : the journal of critical care, 43(3), 231–243. https://doi.org/10.1016/j.hrtlng.2014.02.002

Messinger, G., Banner, M. J., Blanch, P. B., & Layon, A. J. (1995). Using tracheal pressure to trigger the ventilator and control airway pressure during continuous positive airway pressure decreases work of breathing. Chest, 108(2), 509–514. https://doi.org/10.1378/chest.108.2.509

Musick, S., & Alberico, A. (2021). Neurologic Assessment of the Neurocritical Care Patient. Frontiers in neurology, 12, 588989. https://doi.org/10.3389/fneur.2021.588989

Nava, S., Bruschi, C., Fracchia, C., Braschi, A., & Rubini, F. (1997). Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. The European respiratory journal, 10(1), 177–183. https://doi.org/10.1183/09031936.97.10010177

Nava, S., Bruschi, C., Rubini, F., Palo, A., Iotti, G., & Braschi, A. (1995). Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive care medicine, 21(11), 871–879. https://doi.org/10.1007/BF01712327

Nguyen, Q. T., Pastor, D., Lellouche, F., & L'her, E. (2013). Mechanical ventilation system monitoring: automatic detection of dynamic hyperinflation and asynchrony. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2013, 5207–5210. https://doi.org/10.1109/EMBC.2013.6610722

Ninane, V., Rypens, F., Yernault, J. C., & De Troyer, A. (1992). Abdominal muscle use during breathing in patients with chronic airflow obstruction. The American review of respiratory disease, 146(1), 16–21. https://doi.org/10.1164/ajrccm/146.1.16

Oliveira, L. P., Ferreira, M. J. S.; Pantoja, A. J. C.; Costa, K. T. A. (2021). Tracheostomized patients profile in an adult Intensive Care Unit . Research, Society and Development, 10 (15), e280101522996. https://: 10.33448/rsd-v10i15.22996.

Patel, H., & Yang, K. L. (1995). Variability of intrinsic positive end-expiratory pressure in patients receiving mechanical ventilation. Critical care medicine, 23(6), 1074–1079. https://doi.org/10.1097/00003246-199506000-00013

Petrof, B. J., Legaré, M., Goldberg, P., Milic-Emili, J., & Gottfried, S. B. (1990). Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. The American review of respiratory disease, 141(2), 281–289. https://doi.org/10.1164/ajrccm/141.2.281

Pohlman, M. C., McCallister, K. E., Schweickert, W. D., Pohlman, A. S., Nigos, C. P., Krishnan, J. A., Charbeneau, J. T., Gehlbach, B. K., Kress, J. P., & Hall, J. B. (2008). Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Critical care medicine, 36(11), 3019–3023. https://doi.org/10.1097/CCM.0b013e31818b308b

Ramirez, I. I., Arellano, D. H., Adasme, R. S., Landeros, J. M., Salinas, F. A., Vargas, A. G., Vasquez, F. J., Lobos, I. A., Oyarzun, M. L., & Restrepo, R. D. (2017). Ability of ICU Health-Care Professionals to Identify Patient-Ventilator Asynchrony Using Waveform Analysis. Respiratory care, 62(2), 144–149. https://doi.org/10.4187/respcare.04750

Rittayamai, N., Wilcox, E., Drouot, X., Mehta, S., Goffi, A., & Brochard, L. (2016). Positive and negative effects of mechanical ventilation on sleep in the ICU: a review with clinical recommendations. Intensive care medicine, 42(4), 531–541. https://doi.org/10.1007/s00134-015-4179-1

Robba C., Bonatti G., Battaglini D., Rocco P. R. M. & Pelosi P. (2019). Mechanical ventilation in patients with acute ischaemic stroke: from pathophysiology to clinical practice. Critical Care, 23, 388. https://doi.org/10.1186/s13054-019-2662-8.

Roche-Campo, F., Thille, A. W., Drouot, X., Galia, F., Margarit, L., Córdoba-Izquierdo, A., Mancebo, J., d'Ortho, M. P., & Brochard, L. (2013). Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically III tracheostomized patients. Critical care medicine, 41(7), 1637–1644. https://doi.org/10.1097/CCM.0b013e318287f569

Schmidt, M., Demoule, A., Polito, A., Porchet, R., Aboab, J., Siami, S., Morelot-Panzini, C., Similowski, T., & Sharshar, T. (2011). Dyspnea in mechanically ventilated critically ill patients. Critical care medicine, 39(9), 2059–2065. https://doi.org/10.1097/CCM.0b013e31821e8779f

Sieck, G. C., Ferreira, L. F., Reid, M. B., & Mantilla, C. B. (2013). Mechanical properties of respiratory muscles. Comprehensive Physiology, 3(4), 1553–1567. https://doi.org/10.1002/cphy.c130003

Sinderby, C., Liu, S., Colombo, D., Camarotta, G., Slutsky, A. S., Navalesi, P., & Beck, J. (2013). An automated and standardized neural index to quantify patient-ventilator interaction. Critical care (London, England), 17(5), R239. https://doi.org/10.1186/cc13063

Spahija, J., de Marchie, M., Albert, M., Bellemare, P., Delisle, S., Beck, J., & Sinderby, C. (2010). Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Critical care medicine, 38(2), 518–526. https://doi.org/10.1097/CCM.0b013e3181cb0d7b

Tallo, F. S., de Campos Vieira Abib, S., de Andrade Negri, A. J., Cesar, P., Filho, Lopes, R. D., & Lopes, A. C. (2017). Evaluation of self-perception of mechanical ventilation knowledge among Brazilian final-year medical students, residents and emergency physicians. Clinics (Sao Paulo, Brazil), 72(2), 65–70. https://doi.org/10.6061/clinics/2017(02)01

Terzi, N., Piquilloud, L., Rozé, H., Mercat, A., Lofaso, F., Delisle, S., Jolliet, P., Sottiaux, T., Tassaux, D., Roesler, J., Demoule, A., Jaber, S., Mancebo, J., Brochard, L., & Richard, J. C. (2012). Clinical review: Update on neurally adjusted ventilatory assist--report of a round-table conference. Critical care (London, England), 16(3), 225. https://doi.org/10.1186/cc11297

Thille, A. W., Rodriguez, P., Cabello, B., Lellouche, F., & Brochard, L. (2006). Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive care medicine, 32(10), 1515–1522. https://doi.org/10.1007/s00134-006-0301-8

Varon J, Fromm R, Rodarte J, et al. (1994) Prevalence of patient ventilator asynchrony in critically ill patients [abstract]. Chest. 106:141S

Vasconcelos, R.dosS., Melo, L. H., Sales, R. P., Marinho, L. S., Deulefeu, F. C., Reis, R. C., Alves-de-Almeida, M., & Holanda, M. A. (2013). Effect of an automatic triggering and cycling system on comfort and patient-ventilator synchrony during pressure support ventilation. Respiration; international review of thoracic diseases, 86(6), 497–503. https://doi.org/10.1159/000353256

Warnke C, Heine A, Müller-Heinrich A, Knaak C, Friesecke S, Obst A, et al. (2020). Predictors of survival after prolonged weaning from mechanical ventilation. Journal of Critical Care, 60: 212-217. https:// doi: 10.1016/j.jcrc.2020.08.010.

Wunsch, H., Linde-Zwirble, W. T., Angus, D. C., Hartman, M. E., Milbrandt, E. B., & Kahn, J. M. (2010). The epidemiology of mechanical ventilation use in the United States. Critical care medicine, 38(10), 1947–1953. https://doi.org/10.1097/CCM.0b013e3181ef4460

Yonis, H., Crognier, L., Conil, J. M., Serres, I., Rouget, A., Virtos, M., Cougot, P., Minville, V., Fourcade, O., & Georges, B. (2015). Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC anesthesiology, 15, 117. https://doi.org/10.1186/s12871-015-0091-z

Younes M. (1993). Patient -ventilator interaction with pressureassisted modalities of ventilatory support. Semin Respir Med. 14:299-322.

Published

11/01/2024

How to Cite

VIEIRA FILHO, W. de A. .; FERREIRA, M. J. S. .; NUNES, J. S.; LOPES, N. L. S. .; MACIEL , F. L. .; CONCEIÇÃO, M. V. da .; KAYBERS, T. Assessment of the profile of ventilatory asynchronies and demonstrations of occurrences in neurocritical individuals in the adult Intensive Care Unit of a reference hospital. Research, Society and Development, [S. l.], v. 13, n. 1, p. e4813144638, 2024. DOI: 10.33448/rsd-v13i1.44638. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44638. Acesso em: 14 nov. 2024.

Issue

Section

Health Sciences