Analysis of operational parameters of babassu mesocarp in fluidized bed

Authors

DOI:

https://doi.org/10.33448/rsd-v12i14.44644

Keywords:

Fluidized bed; Babassu flour; Fluid dynamic parameters.

Abstract

In recent years, babassu (Orbignya phalerata Martius) has increased its importance among the country's renewable biomass resources, as it has a wide possibility of use. This palm tree can be found in much of Brazil, but it is Maranhão that concentrates almost all babassu almond production for the consumer market, followed by the states: Piauí, Pará, Bahia, Ceará and Tocantins. Its fruit, from which the oil is extracted, is responsible for almost 30% of the Brazilian production of vegetable extractivism, employing more than 2 million people. Babassu flour is produced from the pulp, albeit on a small scale. Due to its importance in Maranhão, the present work deals with the experimental study of the fluid dynamic behavior of babassu flour in a gas-solid fluidized bed. In this work, some of the main parameters of babassu fluidization were observed, among them the pressure drop at minimum (∆Pmf), minimum fluidization speed (Umf), fluidized bed porosity (ε). The objective of this was to study article the use of babassu mesocarp in a fluidized bed, aiming to identify, through the variation of the pressure drop in the bed as a function of the surface velocity of the gas, the fluidization regime and to characterize the fluid dynamic states. The results obtained showed that the babassu flour, for the operating conditions studied, behaved as a type A particle, according to the Geldart classification, with a minimum fluidization velocity estimated for the granulometries 53 µm, 125 µm and mix of 0,038 m/s, 0,084 m/s and 0,062 respectively and pressure drop at minimum fluidization which equals to 0,232 kPa, 0,28 kPa and 0,199 kPa.

References

Albiero, D., Maciel, A. J. d. S., & Gamero, C. A. (2011). Desenvolvimento e projeto de colhedora de babaçu (Orbignya phalerata Mart.) para agricultura familiar nas regiões de matas de transição da Amazônia. Acta Amazonica, 41, 57-68.

Ali, S. S., Al-Ghurabi, E. H., Ibrahim, A. A., & Asif, M. (2018). Effect of adding Geldart group A particles on the collapse of fluidized bed of hydrophilic nanoparticles. Powder technology, 330, 50-57.

Carneiro, M., Sakomura, N., Kawauchi, I., Silva, E., Araujo, J., Fernandes, J., & Gomes Filho, J. (2013). Avaliação do mesocarpo de babaçu (Orbignya ssp) na alimentação de frangos de corte. Ars Vet., 175-182.

Chaves, L. d. S. (2006). Indicadores palinológicos do babaçu (Orbignya phalerata Mart.) Arecaceae em ecossistemas antrópicos e naturais na Amazônia Central.

Cheng, J., Yang, H., Fan, C., Li, R., Yu, X., & Li, H. (2020). Review on the applications and development of fluidized bed electrodes. Journal of Solid State Electrochemistry, 24, 2199-2217.

Clarke, K., Pugsley, T., & Hill, G. (2005). Fluidization of moist sawdust in binary particle systems in a gas–solid fluidized bed. Chemical Engineering Science, 60(24), 6909-6918.

Costa, P. W. C., & da Silva, J. D. (2021). Solar thermal energy application to dry reforming of methane on the open-cell foam to enhance the energy storage efficiency of a thermochemical fluidized bed membrane reformer: modelling and simulation. Research, Society and Development, 10(16), e421101623844-e421101623844.

Cremasco, M. A. (2021). Operações unitárias em sistemas particulados e fluidomecânicos e outros trabalhos. Editora Blucher.

da Silva Pereira, G. V., do Lago, G. V. P., da Silva Pessoa, M. M., Moraes, N. S., Silva, M. J. B., Alves, F. S., & Brasil, D. d. S. B. (2022). Revestimentos de materiais por Leito Fluidizado e Leito de Jorro: um estudo comparativo. Research, Society and Development, 11(17), e92111738731-e92111738731.

De Lira, F. A. (2001). Metrologia na indústria. Saraiva Educação SA.

de Menezes Pavlak, M. C., Zuniga, A. D., Lima, T. L. A., Arévalo-Pinedo, A., Carreiro, S. C., Fleury, C. S., & Silva, D. L. (2007). Aproveitamento da farinha do mesocarpo do babaçu (Orbignya martiana) para obtenção de etanol. Evidência, 7(1), 7-24.

Fan, L.-S. (2013). Gas-liquid-solid fluidization engineering. Butterworth-Heinemann.

Formisani, B., Girimonte, R., & Vivacqua, V. (2011). Fluidization of mixtures of two solids differing in density or size. AIChE journal, 57(9), 2325-2333.

Fotovat, F., Bi, X. T., & Grace, J. R. (2017). Electrostatics in gas-solid fluidized beds: A review. Chemical Engineering Science, 173, 303-334.

Geldart, D. (1986). Gas fluidization technology.

Green, D. W., & Southard, M. Z. (2019). Perry's chemical engineers' handbook. McGraw-Hill Education.

Han, Z., Yue, J., Geng, S., Hu, D., Liu, X., Suleiman, S. B., & Xu, G. (2021). State-of-the-art hydrodynamics of gas-solid micro fluidized beds. Chemical Engineering Science, 232, 116345.

Hosseini, S. H., Moradkhani, M. A., Rasteh, M., & Rahimi, M. (2021). New smart models for minimum fluidization velocity forecasting in the tapered fluidized beds based on particle size distribution. Industrial & Engineering Chemistry Research, 60(42), 15289-15300.

Kunii, D., & Levenspiel, O. (1991). Fluidization engineering. Butterworth-Heinemann.

Lim, J. H., Lee, D. H., Chae, H. J., & Jeong, S. Y. (2013). Pressure change and control of the solid circulation rate of Geldart A particles in a small diameter L-valve. Powder technology, 243, 139-148.

Park, K. J., Brod, F. P., & Oliveira, R. A. d. (2006). Aerodinamics of vibro-fluidized beds: a review. Engenharia Agrícola, 26, 856-869.

Pell, M. (2012). Gas fluidization. Elsevier.

Porro, R. (2019). A economia invisível do babaçu e sua importância para meios de vida em comunidades agroextrativistas. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 14, 169-188.

Pusapati, R. T., & Rao, T. V. (2014). Fluidized bed processing: A review. Indian Journal of Research in Pharmacy and Biotechnology, 2(4), 1360.

Santos, J. d. J. (2008). Biodiesel de babaçu: avaliação térmica, oxidativa e misturas binárias. Universidade Federal da Paraíba.

Soler, M. P., Vitali, A. d. A., & Muto, E. F. (2007). Tecnologia de quebra do coco babaçu (Orbignya speciosa). Food Science and Technology, 27, 717-722.

Sudre, K. J. F., Santos, A. M. C. M., & Moreira, L. R. d. M. O. (2015). Avaliar a composição química do mesocarpo de babaçu (Orbignya oleifera) in natura no município Raposa-MA. Eclética Química, 40, 216-226.

Taghipour, F., Ellis, N., & Wong, C. (2005). Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chemical Engineering Science, 60(24), 6857-6867.

Wang, J., van der Hoef, M., & Kuipers, J. (2013). Particle granular temperature of Geldart A, A/B and B particles in dense gas-fluidized beds. Chemical Engineering Science, 97, 264-271.

Wilkinson, D. (1995). Determination of minimum fluidization velocity by pressure fluctuation measurement. The Canadian Journal of Chemical Engineering, 73(4), 562-565.

Downloads

Published

30/12/2023

How to Cite

SOARES, I. Q. .; SANTANA, A. A. . Analysis of operational parameters of babassu mesocarp in fluidized bed. Research, Society and Development, [S. l.], v. 12, n. 14, p. e113121444644, 2023. DOI: 10.33448/rsd-v12i14.44644. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44644. Acesso em: 25 dec. 2024.

Issue

Section

Engineerings