Technologies in smart agriculture: Efficiency and sustainability

Authors

DOI:

https://doi.org/10.33448/rsd-v13i4.45072

Keywords:

Digital agriculture; IoT; IA; ICTs.

Abstract

Population growth requires an increasing demand for food and puts increasing pressure on natural resources. To provide food for the next generations, agricultural activities must become increasingly productive and sustainable. Digital technologies emerge as great allies for sustainable agricultural development, increasing productivity, reducing pollutant emissions and improving the conservation of natural resources. In agriculture, the automation of machines and implements, combined with the use of information technologies for data acquisition and production system management, are the main topics used to form a management system known as Precision Agriculture (AP). These new technologies, some in development and others already operational, have been a recurring topic in the current scientific community. In this work, we seek to understand which emerging technologies have recently been highlighted in agricultural activity and what advances and challenges these technologies face. The research indicated that technologies such as: Internet of Things (IoT), Robotics, Artificial Intelligence and (Big Data) are being widely used with promising results for the agricultural sector. However, there are still important challenges for digital transformation to integrate different scientific, technological, social and economic agricultural classes and regions.

References

Bassoi, L. H., Inamasu, R. Y., Bernardi, A. C. C., Vaz, C. M. P., Speranza, E. A. & Cruvinel, P. E. (2019) Agricultura de precisão e agricultura digital. Teccogs - Revista Digital de Tecnologias Cognitivas, 17-36.

Bechar, A. & Vigneault, C. (2016) Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94-111.

Bolfea, E. L., Jorge, B. A. C. & Sanchesc, I. D. (2021) Tendências, desafios e oportunidades da Agricultura Digital no Brasil. RECoDAF – Revista Eletrônica Competências Digitais para Agricultura Familiar, 7(2): 15-36.

Bolfea, E. L., Jorge, L. A. C., Sanches, I., Costa, C. C. Da; Luchiari Jr., A., Victória, D., Inamasu, R., Grego, C., Ferreira, V. & Ramirez, A. (2020) Agricultura digital no Brasil: tendências, desafios e oportunidades: resultados de pesquisa Online. Campinas: Embrapa. 44 p.

Durkin, J. (1994) Expert Systems Design And Development. Prentice Hall.

Elijah, O., Rahman, T. A., Orikumhi, I., Leow C. Y. & Hindia, M. H. D. N. (2018) An overview of internet of things (Iot) And Data Analytics In Agriculture: Benefits And ChallengesIeee Internet Things J. 5(5): 3758-3773.

Faria, L., Oliveira, F. S., Pinto, P. E. D. & Szwarcfiter, J. L. (2021) Ciência de dados: Algoritmos e aplicações. Rio de Janeiro: IMPA, 272p.

Gandomi, A. & Haider, M. (2015) Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35, 137-144.

Gomes, J. F. S. & Leta, F. R. (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol, 235, 989-1000.

Gonzalez, R. C., Woods, R. E. & Eddins, S. L. (2009) Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing, Knoxville.

Grimstad, L. C. D., Pham, H. T. & Phan E P. J. Sobre o design de um robô agrícola de baixo custo, leve e altamente versátil. (2015) Workshop Internacional IEEE sobre Robótica Avançada e seus Impactos Sociais (ARSO), Lyon , França, 1-6.

Hackenhaar, N. M., Hackenhaar, C. & Abreu, Y. V. (2015). Robótica na agricultura. INTERAÇÕES, 16(1): 119-129.

Hasegawa, Y. (2009) Avanços em Robótica e Automação: Perspectivas Históricas. In: Nof, S. (eds) Manual de Automação Springer. Manuais Springer. Springer. Berlim, Heidelberg.

Hassan, R., Qamar, F., Hasan, M. K., Aman, A. H. M. & Ahmed, A.S. (2020) Internet of Things and Its Applications: A Comprehensive Survey. Symmetry, 12,1674.

Hassan, S. I., Alam, M. M., Illahim, U., Al Ghamdi, M. A., Almotiri, S. H., Mohd Su´Ud, M. A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture. EEE Access, 9, 32517-32548.

Hein, A. F. & Silva, N. L. S. (2019). A insustentabilidade na agricultura familiar e o êxodo rural contemporâneo Estudos Sociedade e Agricultura, 27(2): 394-417.

Henriques A. B. (2011) A moderna agricultura no final do século XIX em São Paulo: algumas propostas. História [Internet], 30(2), 359-380.

Hestand, T. D. M., Nogales, C., Allen, B. & Colwell, J. (2020) Machine vision system for orchard management. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (Eds.), Machine Vision and Navigation. Springer, Switzerland, 197-240.

Hiremath, S. A., Wam Van Der, G., Van Evert, F. K., Stein, A. & Ter Braak, C. J. F. (2014) Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50.

Hutson, M. (2017) AI Glossary: Artificial intelligence, in so many words. Science, 357(6346):19.

IBM. (2011) Soluções analíticas e otimização de negócios: A nova vantagem competitiva. 12p.

Moreti, M. P., Oliveira T., Sartori, R. & Caetano, W. (2021) Inteligência Artificial no Agronegócio e os desaios para a proteção da propriedade intelectual. Cadernos de Prospecção, 14(1):60-77.

Nature Food. (2020) Systems thinking, systems doing. Nat. Food 1, v.12, p.659, 2020.

Oliveira, V. B. (2021) Estudo e comparação de tipos de robôs na agricultura para a pulverização de pesticida. Monografia. Faculdade De Engenharia Elétrica, Universidade Federal De Uberlândia, Patos de Minas. 85p. 2021.

Ollero, A. & Castaño, Á. R. (2009). Automação de Mobilidade e Navegação. In: Nof, S. (eds) Manual de Automação Springer. Manuais Springer. Springer, Berlim, Heidelberg.

Patil, G. G. & Banyal, R. K. Techniques of deep learning for image recognition. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) 2019, 1-5. IEEE.

Pivoto, D., Barham, B., Dabdab, P., Zhang, D., Talamini, E. (2019) Factors influencing the adoption of smart farming by Brazilian grain farmers. Int. Food Agribus. Manag. Rev. 22(4): 571–588.

Puri, V., Nayyar, A. & Raja L. (2017) Agriculture drones: A modern breakthrough in precision agriculture. Jounar of Statistics and Management System, 20(4):507-518.

Queiroz, D. M., Coelho, A. L. F., Valente, D. S. M. & Schueller, K. (2020) Sensors applied to Digital Agriculture: A review. Rev. Ciênc. Agron., 51, Special Agriculture 4.0.

Rodenacker, K. & Bengtsson, E. 2003. A feature set for cytometry on digitized microscopic images. Anal Cell Pathol, 25(1), 1-36.

Rodrigues, D. B., Santos, C. J. S. S., Silva, C. B., Rodrigues, F., Alcântara, G. A. M. & Moreira, K. S. (2023) The application of iot (internet of things) in agriculture: a systematic review. Revista ft, 125.

Rosa, C. M., Souza, P. A. R. & Silva, J. M. (2020) Inovação em saúde e internet das coisas (IoT): Um panorama do desenvolvimento científico e tecnológico. Perspect ciênc inf [Internet], 23(3), 164-181.

Saldanha, R. F., Barcellos, C. & Pedroso, M. M. (2021) Data science and big data: what do these terms mean for population and health related studies? Cad. Saúde Colet.,29,51-58.

Samuel, A. L. Alguns estudos em aprendizado de máquina utilizando o jogo de damas. (2000) IBM Journal of Research and Development, 44(1):206-226.

Sawant, M., Urkude, R. & Jawale, S. (2016) Organized data and information for efficacious agriculture using PRIDE™ model. Int. Food. Agribusiness Manag. Rev. 19,115-130.

Schnfeld, M., Heil, R. & Bittner, L. (2018) Big Data on a FarmSmart Farming, Big Data in Context: T. Hoeren, B. Kolany-Raiser, Eds, p.109-120.

Sun, C., Shrivasava, A., Singh, S. & Gupta, A. (2017) Revisiting unreasonable effectiveness of data in deep learning era. In: The IEEE International Conference on Computer Vision (ICCV), 843-852.

Sykuta, M. E. (2016) Big data in agriculture: property rights, privacy and competition in age data services. International Food and Agribusiness Management Review,19(1030-2016-83141), 57-74.

Talaviya, T., Shah, D., Patel, N., Yagnik, H. & Shah, M. (2020) Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence In Agriculture, 4,58-73.

Taurion, C. (2013) Big data. Rio de Janeiro: Brasport Livros e Multimídia Ltda.

Teixeira, J. F. (2014) Inteligência artificial. 2014. Pia Sociedade de São Paulo-Editora Paulus. 64p.

Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E. & Avizzano, C. A. (2015) Towards smart farming and sustainable agriculture with drones. Proc. Int. Conf. Intell. Environ. 140-143.

Wolfert, S., Ge, L., Verdouw, C. & Bogaardt, M. J. (2017) Big data in smart farming – a review. Agricultural Systems, 153,69-80.

World Competitiveness Report. World Economic Forum 2020. Disponível em: https://www.weforum.org/strategic-intelligence/.

Zhai, Z., Martínez, J. F., Beltran, V. & Martínez, N. L. (2020) Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170(105256),25-35.

Published

18/04/2024

How to Cite

ASSIS, K. C. de C.; PIANTONI, J.; AZEVEDO, R. F. Technologies in smart agriculture: Efficiency and sustainability. Research, Society and Development, [S. l.], v. 13, n. 4, p. e7013445072, 2024. DOI: 10.33448/rsd-v13i4.45072. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45072. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences