Tecnologias em agricultura inteligente: Eficiência e sustentabilidade
DOI:
https://doi.org/10.33448/rsd-v13i4.45072Palavras-chave:
Agricultura Digital; IoT; IA; TIC’s.Resumo
O aumento populacional exige uma demanda crescente por alimentos e exerce uma pressão cada vez maior nos recursos naturais. Para fornecer alimento para as próximas gerações as atividades agrícolas devem se tornar cada vez mais produtivas e sustentáveis. As tecnologias digitais surgem como grandes aliadas ao desenvolvimento agrícola sustentável, aumentando a produtividade, reduzindo a emissão de poluentes e melhorando conservação dos recursos naturais. Na agricultura, a automação de máquinas e implementos, aliada ao uso de tecnologias de informação para a aquisição de dados e no gerenciamento do sistema de produção, são os principais tópicos utilizados para formar um sistema de manejo conhecido como Agricultura de Precisão (AP). Essas novas tecnologias, algumas em desenvolvimento e outras já operacionais, têm figurado como assunto recorrente na comunidade científica atual. Neste trabalho, busca-se compreender quais tecnologias emergentes tem tido destaque recentemente na atividade agrícola e quais são os avanços e desafios que tais tecnologias encontram. A pesquisa indicou que tecnologias como: Internet das Coisas (IoT), Robótica, Inteligência Artificial e (Big Data) estão sendo amplamente utilizados com resultados promissores para o setor agrícola. No entanto, ainda existem importantes desafios para que a transformação digital possa integrar as diferentes classes e regiões agrícolas de ordem científica, tecnológica, social e econômica.
Referências
Bassoi, L. H., Inamasu, R. Y., Bernardi, A. C. C., Vaz, C. M. P., Speranza, E. A. & Cruvinel, P. E. (2019) Agricultura de precisão e agricultura digital. Teccogs - Revista Digital de Tecnologias Cognitivas, 17-36.
Bechar, A. & Vigneault, C. (2016) Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94-111.
Bolfea, E. L., Jorge, B. A. C. & Sanchesc, I. D. (2021) Tendências, desafios e oportunidades da Agricultura Digital no Brasil. RECoDAF – Revista Eletrônica Competências Digitais para Agricultura Familiar, 7(2): 15-36.
Bolfea, E. L., Jorge, L. A. C., Sanches, I., Costa, C. C. Da; Luchiari Jr., A., Victória, D., Inamasu, R., Grego, C., Ferreira, V. & Ramirez, A. (2020) Agricultura digital no Brasil: tendências, desafios e oportunidades: resultados de pesquisa Online. Campinas: Embrapa. 44 p.
Durkin, J. (1994) Expert Systems Design And Development. Prentice Hall.
Elijah, O., Rahman, T. A., Orikumhi, I., Leow C. Y. & Hindia, M. H. D. N. (2018) An overview of internet of things (Iot) And Data Analytics In Agriculture: Benefits And ChallengesIeee Internet Things J. 5(5): 3758-3773.
Faria, L., Oliveira, F. S., Pinto, P. E. D. & Szwarcfiter, J. L. (2021) Ciência de dados: Algoritmos e aplicações. Rio de Janeiro: IMPA, 272p.
Gandomi, A. & Haider, M. (2015) Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35, 137-144.
Gomes, J. F. S. & Leta, F. R. (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol, 235, 989-1000.
Gonzalez, R. C., Woods, R. E. & Eddins, S. L. (2009) Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing, Knoxville.
Grimstad, L. C. D., Pham, H. T. & Phan E P. J. Sobre o design de um robô agrícola de baixo custo, leve e altamente versátil. (2015) Workshop Internacional IEEE sobre Robótica Avançada e seus Impactos Sociais (ARSO), Lyon , França, 1-6.
Hackenhaar, N. M., Hackenhaar, C. & Abreu, Y. V. (2015). Robótica na agricultura. INTERAÇÕES, 16(1): 119-129.
Hasegawa, Y. (2009) Avanços em Robótica e Automação: Perspectivas Históricas. In: Nof, S. (eds) Manual de Automação Springer. Manuais Springer. Springer. Berlim, Heidelberg.
Hassan, R., Qamar, F., Hasan, M. K., Aman, A. H. M. & Ahmed, A.S. (2020) Internet of Things and Its Applications: A Comprehensive Survey. Symmetry, 12,1674.
Hassan, S. I., Alam, M. M., Illahim, U., Al Ghamdi, M. A., Almotiri, S. H., Mohd Su´Ud, M. A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture. EEE Access, 9, 32517-32548.
Hein, A. F. & Silva, N. L. S. (2019). A insustentabilidade na agricultura familiar e o êxodo rural contemporâneo Estudos Sociedade e Agricultura, 27(2): 394-417.
Henriques A. B. (2011) A moderna agricultura no final do século XIX em São Paulo: algumas propostas. História [Internet], 30(2), 359-380.
Hestand, T. D. M., Nogales, C., Allen, B. & Colwell, J. (2020) Machine vision system for orchard management. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (Eds.), Machine Vision and Navigation. Springer, Switzerland, 197-240.
Hiremath, S. A., Wam Van Der, G., Van Evert, F. K., Stein, A. & Ter Braak, C. J. F. (2014) Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50.
Hutson, M. (2017) AI Glossary: Artificial intelligence, in so many words. Science, 357(6346):19.
IBM. (2011) Soluções analíticas e otimização de negócios: A nova vantagem competitiva. 12p.
Moreti, M. P., Oliveira T., Sartori, R. & Caetano, W. (2021) Inteligência Artificial no Agronegócio e os desaios para a proteção da propriedade intelectual. Cadernos de Prospecção, 14(1):60-77.
Nature Food. (2020) Systems thinking, systems doing. Nat. Food 1, v.12, p.659, 2020.
Oliveira, V. B. (2021) Estudo e comparação de tipos de robôs na agricultura para a pulverização de pesticida. Monografia. Faculdade De Engenharia Elétrica, Universidade Federal De Uberlândia, Patos de Minas. 85p. 2021.
Ollero, A. & Castaño, Á. R. (2009). Automação de Mobilidade e Navegação. In: Nof, S. (eds) Manual de Automação Springer. Manuais Springer. Springer, Berlim, Heidelberg.
Patil, G. G. & Banyal, R. K. Techniques of deep learning for image recognition. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) 2019, 1-5. IEEE.
Pivoto, D., Barham, B., Dabdab, P., Zhang, D., Talamini, E. (2019) Factors influencing the adoption of smart farming by Brazilian grain farmers. Int. Food Agribus. Manag. Rev. 22(4): 571–588.
Puri, V., Nayyar, A. & Raja L. (2017) Agriculture drones: A modern breakthrough in precision agriculture. Jounar of Statistics and Management System, 20(4):507-518.
Queiroz, D. M., Coelho, A. L. F., Valente, D. S. M. & Schueller, K. (2020) Sensors applied to Digital Agriculture: A review. Rev. Ciênc. Agron., 51, Special Agriculture 4.0.
Rodenacker, K. & Bengtsson, E. 2003. A feature set for cytometry on digitized microscopic images. Anal Cell Pathol, 25(1), 1-36.
Rodrigues, D. B., Santos, C. J. S. S., Silva, C. B., Rodrigues, F., Alcântara, G. A. M. & Moreira, K. S. (2023) The application of iot (internet of things) in agriculture: a systematic review. Revista ft, 125.
Rosa, C. M., Souza, P. A. R. & Silva, J. M. (2020) Inovação em saúde e internet das coisas (IoT): Um panorama do desenvolvimento científico e tecnológico. Perspect ciênc inf [Internet], 23(3), 164-181.
Saldanha, R. F., Barcellos, C. & Pedroso, M. M. (2021) Data science and big data: what do these terms mean for population and health related studies? Cad. Saúde Colet.,29,51-58.
Samuel, A. L. Alguns estudos em aprendizado de máquina utilizando o jogo de damas. (2000) IBM Journal of Research and Development, 44(1):206-226.
Sawant, M., Urkude, R. & Jawale, S. (2016) Organized data and information for efficacious agriculture using PRIDE™ model. Int. Food. Agribusiness Manag. Rev. 19,115-130.
Schnfeld, M., Heil, R. & Bittner, L. (2018) Big Data on a FarmSmart Farming, Big Data in Context: T. Hoeren, B. Kolany-Raiser, Eds, p.109-120.
Sun, C., Shrivasava, A., Singh, S. & Gupta, A. (2017) Revisiting unreasonable effectiveness of data in deep learning era. In: The IEEE International Conference on Computer Vision (ICCV), 843-852.
Sykuta, M. E. (2016) Big data in agriculture: property rights, privacy and competition in age data services. International Food and Agribusiness Management Review,19(1030-2016-83141), 57-74.
Talaviya, T., Shah, D., Patel, N., Yagnik, H. & Shah, M. (2020) Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence In Agriculture, 4,58-73.
Taurion, C. (2013) Big data. Rio de Janeiro: Brasport Livros e Multimídia Ltda.
Teixeira, J. F. (2014) Inteligência artificial. 2014. Pia Sociedade de São Paulo-Editora Paulus. 64p.
Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E. & Avizzano, C. A. (2015) Towards smart farming and sustainable agriculture with drones. Proc. Int. Conf. Intell. Environ. 140-143.
Wolfert, S., Ge, L., Verdouw, C. & Bogaardt, M. J. (2017) Big data in smart farming – a review. Agricultural Systems, 153,69-80.
World Competitiveness Report. World Economic Forum 2020. Disponível em: https://www.weforum.org/strategic-intelligence/.
Zhai, Z., Martínez, J. F., Beltran, V. & Martínez, N. L. (2020) Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170(105256),25-35.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Kamila Cristina de Credo Assis; Jane Piantoni; Rodrigo Ferraz Azevedo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.