Prenatal physical exercise and Zika virus infection have no effect on maternal behavior
DOI:
https://doi.org/10.33448/rsd-v13i4.45496Keywords:
Swimming; Behavior; Brain; Infection.Abstract
Some of the worst effects associated with the Zika virus infection during gestation include microcephaly, and central nervous system damage. Pregnancy-related physical exercise is recognized to improve both the mother's and her unborn child's health. It is widely known that male newborns of late-pregnancy mother infection tend to exhibit more depressive and anxious behaviors as they age. However, nothing is known about how the Zika virus could affect a mother's behavior in the first few days after giving birth. The objective of this study was to evaluate if 4 weeks of moderate-intensity swimming during pregnancy prevents negative outcomes of prenatal Zika infection in the behavior of the dams. Dams were randomly selected and divided into three groups: Mock (n= 8) - untrained group, intraperitoneally injected with saline; Zika (n = 8) - untrained group, intraperitoneally injected with Zika; and Zika/swim (n = 8) - trained group, intraperitoneally injected with Zika. The swimming sessions were initiated before mating, which occurred between the 5th and 7th day of the 1st week of the swimming training, according to the estrous cycle and lasted until the parturition date. Prenatal Zika virus infection did not change maternal body weight or maternal behavior significantly independently of performing or not physical exercise.
References
Bogoch, Y., Biala, Y. N., Linial, M., & Weinstock, M. (2007). Anxiety induced by prenatal stress is associated with suppression of hippocampal genes involved in synaptic function. Journal of Neurochemistry, 101(4), 1018–1030. https://doi.org/10.1111/j.1471-4159.2006.04402.x
Bolaños, L., Matute, E., Ramírez-Dueñas, M. D. L., & Zarabozo, D. (2015). Neuropsychological Impairment in School-Aged Children Born to Mothers With Gestational Diabetes. Journal of Child Neurology, 30(12), 1616–1624. https://doi.org/10.1177/0883073815575574
Bustamante, C., Henríquez, R., Medina, F., Reinoso, C., Vargas, R., & Pascual, R. (2013). Maternal exercise during pregnancy ameliorates the postnatal neuronal impairments induced by prenatal restraint stress in mice. International Journal of Developmental Neuroscience, 31(4), 267–273. https://doi.org/10.1016/j.ijdevneu.2013.02.007
Caine, E. A., Scheaffer, S. M., Broughton, D. E., Salazar, V., Govero, J., Poddar, S., Osula, A., Halabi, J., Skaznik-Wikiel, M. E., Diamond, M. S., & Moley, K. H. (2019). Zika Virus Causes Acute Infection and Inflammation in the Ovary of Mice Without Apparent Defects in Fertility. The Journal of Infectious Diseases, Xx Xxxx. https://doi.org/10.1093/infdis/jiz239
Castro, V. L. S. S. D., Destefani, C. R., Diniz, C., & Poli, P. (2007). Evaluation of neurodevelopmental effects on rats exposed prenatally to sulfentrazone. Neurotoxicology, 28, 1249–1259. https://doi.org/10.1016/j.neuro.2007.06.001
Cugola, F. R., Fernandes, I. R., Russo, F. B., Freitas, B. C., Dias, J. L. M., Guimarães, K. P., Benazzato, C., Almeida, N., Pignatari, G. C., Romero, S., Polonio, C. M., Cunha, I., Freitas, C. L., Brandaõ, W. N., Rossato, C., Andrade, D. G., Faria, D. D. P., Garcez, A. T., Buchpigel, C. A., & Beltrao-Braga, P. C. B. B. (2016). The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 534(7606), 267–271. https://doi.org/10.1038/nature18296
De Sousa, R. A. L. (2021). Animal models of gestational diabetes: Characteristics and consequences to the brain and behavior of the offspring. Metabolic Brain Disease, 2014–2019.
De Sousa, R. A. L., Caria, A. C. I., De Jesus Silva, F. M., Diniz e Magalhães, C. O., Freitas, D. A., Lacerda, A. C. R., Mendonça, V. A., Cassilhas, R. C., & Leite, H. R. (2020). High-intensity resistance training induces changes in cognitive function, but not in locomotor activity or anxious behavior in rats induced to type 2 diabetes. Physiology & Behavior, 223(June), 1–7. https://doi.org/10.1016/j.physbeh.2020.112998
De Sousa, R. A. L., Hagenbeck, K. F., Arsa, G., & Pardono, E. (2020). Moderate / high resistance exercise is better to reduce blood glucose and blood pressure in middle-aged diabetic subjects. Revista Brasileira de Educação Física e Esporte, 34(1), 165–175.
De Sousa, R. A. L., Peixoto, M. F. D., Leite, H. R., Oliveira, L. R. S. de D. A. F., Silva-Júnior, F. A. da, Oliveira, H. S., Rocha-Vieira, E., Cassilhas, R. C., & Oliveira, D. B. de. (2020). Neurological consequences of exercise during prenatal Zika virus exposure to mice pups. International Journal of Neuroscience, 21, 1–11. https://doi.org/10.1080/00207454.2020.1860970
Enayati, M., Solati, J., Hosseini, M. H., Shahi, H. R., Saki, G., & Salari, A. A. (2012). Maternal infection during late pregnancy increases anxiety- and depression-like behaviors with increasing age in male offspring. Brain Research Bulletin, 87(2–3), 295–302. https://doi.org/10.1016/j.brainresbull.2011.08.015
Ferrari, N., Bae-Gartz, I., Bauer, C., Janoschek, R., Koxholt, I., Mahabir, E., Appel, S., Alejandre Alcazar, M. A., Grossmann, N., Vohlen, C., Brockmeier, K., Dötsch, J., Hucklenbruch-Rother, E., & Graf, C. (2017). Exercise during pregnancy and its impact on mothers and offspring in humans and mice. Journal of Developmental Origins of Health and Disease, 9(1), 1–14. https://doi.org/10.1017/S2040174417000617
Gardener, H., & Buka, S. L. (2013). Prenatal risk factors for autism: A comprehensive meta-analysis. Br J Psychiatry, 195(1), 7–14. https://doi.org/10.1192/bjp.bp.108.051672.Prenatal
Ghafari, S., & Golalipour, M. J. (2014). Prenatal morphine exposure reduces pyramidal neurons in CA1, CA2 and CA3 subfields of mice hippocampus. Iranian Journal of Basic Medical Sciences, 17, 155–161.
Gurung, S., Reuter, N., Preno, A., Dubaut, J., Nadeau, H., Hyatt, K., Singleton, K., Martin, A., Parks, W. T., Papin, J. F., & Myers, D. A. (2019). Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathogens, 15(1), 1–33. https://doi.org/10.1371/journal.ppat.1007507
Hawkins, M., Braun, B., Marcus, B. H., Stanek, E., Markenson, G., & Chasan-Taber, L. (2015). The impact of an exercise intervention on C - reactive protein during pregnancy: A randomized controlled trial. BMC Pregnancy and Childbirth, 15(1), 1–12. https://doi.org/10.1186/s12884-015-0576-2
Li, C., Xu, D., Ye, Q., Hong, S., Jiang, Y., Liu, X., Zhang, N., Shi, L., Qin, C. F., & Xu, Z. (2016). Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 19(5), 120–126. https://doi.org/10.1016/j.stem.2016.04.017
Merchán-Hamann, E., & Tauil, P. L. (2021). Proposta de classificação dos diferentes tipos de estudos epidemiológicos descritivos. Epidemiologia e Serviços de Saúde, 30(1), e2018126. https://doi.org/10.1590/s1679-49742021000100026
Oliveira, W. K. de, Cortez-Escalante, J., Oliveira, W. T. G. H. de, Carmo, G. M. I. do, Henriques, C. M. P., Coelho, G. E., & França, G. V. A. de. (2016). Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy—Brazil, 2015. Morbidity and Mortality Weekly Report - US Department of Health and Human Services/Centers for Disease Control and Prevention, 65(9), 242–247. https://doi.org/10.1016/j.amjhyper.2004.05.007
Pacheco-López, G., Giovanoli, S., Langhans, W., & Meyer, U. (2013). Priming of metabolic dysfunctions by prenatal immune activation in mice: Relevance to schizophrenia. Schizophrenia Bulletin, 39(2), 319–329. https://doi.org/10.1093/schbul/sbr178
Reis, A. R., de Azevedo, M. S., de Souza, M. A., Lutz, M. L., Alves, M. B., Izquierdo, I., Cammarota, M., Silveira, P. P., & Lucion, A. B. (2014). Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding. Behavioural Brain Research, 265, 216–228. https://doi.org/10.1016/j.bbr.2014.02.036
Schuler-Faccini, L., Ribeiro, E. M., Feitosa, I. M., Horovitz, D. D., Cavalcanti, D. P., Pessoa, A., Doriqui, M. J., Neri, J. I., Neto, J. M., Wanderley, H. Y., Cernach, M., El-Husny, A. S., Pone, M. V., & Serao, C. L. (2016). Possible Association Between Zika Virus Infection and Microcephaly—Brazil, 2015. MMWR. Morbidity and Mortality Weekly Report, 65(3), 59–62. http://dx.doi.org/10.15585/mmwr.mm6503e2
Shao, Q., Herrlinger, S., Yang, S. L., Lai, F., Moore, J. M., Brindley, M. A., & Chen, J. F. (2016). Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development (Cambridge), 143(22), 4127–4136. https://doi.org/10.1242/dev.143768
Sousa, R. A. L. de. (2018). Gestational diabetes is associated to the development of brain insulin resistance in the offspring. International Journal of Diabetes in Developing Countries, 39, 408–416. https://doi.org/10.1007/s13410-018-0618-1
Trus, I., Udenze, D., Cox, B., Berube, N., Nordquist, R. E., Van Der Staay, F. J., Huang, Y., Kobinger, G., Safronetz, D., Gerdts, V., & Karniychuk, U. (2019). Subclinical in utero Zika virus infection is associated with interferon alpha sequelae and sex-specific molecular brain pathology in asymptomatic porcine offspring. In PLoS Pathogens (Vol. 15, Issue 11). https://doi.org/10.1371/journal.ppat.1008038
Xiao, L., Kish, V. L., Benders, K. M., & Wu, Z.-X. (2016). Prenatal and Early Postnatal Exposure to Cigarette Smoke Decreases BDNF/TrkB Signaling and Increases Abnormal Behaviors Later in Life. International Journal of Neuropsychopharmacology, 19(5), 1–11. https://doi.org/10.1093/ijnp/pyv117
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ricardo Augusto Leoni De Sousa; Ricardo Cardoso Cassilhas; Marco Fabrício Dias Peixoto; Fidelis Antonio da Silva-Júnior; Etel Rocha-Vieira ; Bruno Ferreira Mendes; Danilo Bretas de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.