Antibacterial activity of molybdenum disulfide and green silver nanoparticles reduced by tea tree essential oil compounds

Authors

DOI:

https://doi.org/10.33448/rsd-v13i5.45818

Keywords:

Tea tree; Silver nanoparticles; Molybdenum disulfide; Antibacterial.

Abstract

The increasing resistance of microorganisms against antibiotics puts at risk the human being. This event requires urgently developing strategies for producing alternative antibacterial agents. The combination of green silver nanoparticles (reduced by essential oil) and molybdenum disulfide can be synergistically explored given the interaction of components. Herein, it is reported the response of isolated and combined components with resulting outstanding kinetics of kill-time (complete elimination of Staphylococcus aureus and Escherichia coli after four hours of contact), effective action against biofilm formation (~99% of inhibition in the biofilm formation). These results confirm that the intercalation of silver nanoparticles between exfoliated sheets of MoS2 represents a promising strategy to develop efficient antibacterial agents against Gram-positive and Gram-negative bacteria.

References

Agnihotri, S., & Dhiman, N. K. (2017). Development of Nano-Antimicrobial Biomaterials for Biomedical Applications (pp. 479–545). https://doi.org/10.1007/978-981-10-3328-5_12

Anderson, K., Poulter, B., Dudgeon, J., Li, S.-E., & Ma, X. (2017). A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS2. Sensors, 17(8), 1807. https://doi.org/10.3390/s17081807

Awasthi, G. P., Adhikari, S. P., Ko, S., Kim, H. J., Park, C. H., & Kim, C. S. (2016). Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. Journal of Alloys and Compounds, 682, 208–215. https://doi.org/10.1016/j.jallcom.2016.04.267

Bharadwaj, K. K., Rabha, B., Pati, S., Choudhury, B. K., Sarkar, T., Gogoi, S. K., Kakati, N., Baishya, D., Kari, Z. A., & Edinur, H. A. (2021). Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). Nanomaterials, 11(8), 1999. https://doi.org/10.3390/nano11081999

Bodík, M., Annušová, A., Hagara, J., Mičušík, M., Omastová, M., Kotlár, M., Chlpík, J., Cirák, J., Švajdlenková, H., Anguš, M., Roldán, A. M., Veis, P., Jergel, M., Majkova, E., & Šiffalovič, P. (2019). An elevated concentration of MoS 2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoO x nanoparticles. Physical Chemistry Chemical Physics, 21(23), 12396–12405. https://doi.org/10.1039/C9CP01951K

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences, 22(13), 7202. https://doi.org/10.3390/ijms22137202

CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Performance Standards for Antimicrobial Susceptibility Testing. 29th Ed. CLSI Supplement M100, 296.

Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, Volume 12, 3903–3910. https://doi.org/10.2147/IDR.S234610

Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., & Chhowalla, M. (2011). Photoluminescence from Chemically Exfoliated MoS 2. Nano Letters, 11(12), 5111–5116. https://doi.org/10.1021/nl201874w

Feng, X., Xing, W., Song, L., & Hu, Y. (2014). In situ synthesis of a MoS 2 /CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. Journal of Materials Chemistry A, 2(33), 13299. https://doi.org/10.1039/C4TA01885K

Guimarães, M.L., da Silva, F. A. G., da Costa, M. M., & de Oliveira, H. P. (2020). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscience (Switzerland), 10(4). https://doi.org/10.1007/s13204-019-01181-4

Guimarães, Milena Lima, & Amarante, J. F. (2021). A importância dos óleos essenciais na síntese verde de nanopartículas metálicas The importance of essential oils in the green synthesis of metallic nanoparticles.

Guimarães, Milena Lima, Amarante, J. F., & Oliveira, H. P. de. (2021). A importância dos óleos essenciais na síntese verde de nanopartículas metálicas. Matéria (Rio de Janeiro), 26(3). https://doi.org/10.1590/s1517-707620210003.1305

Guimarães, Milena Lima, da Silva, F. A. G., de Souza, A. M., da Costa, M. M., & de Oliveira, H. P. (2022a). All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. Applied Nanoscience, 12(2), 129–138. https://doi.org/10.1007/s13204-021-02249-w

Guimarães, Milena Lima, da Silva, F. A. G., de Souza, A. M., da Costa, M. M., & de Oliveira, H. P. (2022b). All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. Applied Nanoscience 2021 12:2, 12(2), 129–138. https://doi.org/10.1007/S13204-021-02249-W

Guimarães, Milena Lima, Silva Jr, F. A. G., Costa, M. M., & Oliveira, H. P. (2019). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscience, 0123456789. https://doi.org/10.1007/s13204-019-01181-4

Huang, W., Nie, Y., Zhu, N., Yang, Y., Zhu, C., Ji, M., Wu, D., & Chen, K. (2020). Hybrid Label-Free Molecular Microscopies for Simultaneous Visualization of Changes in Cell Wall Polysaccharides of Peach at Single- and Multiple-Cell Levels during Postharvest Storage. Cells, 9(3), 761. https://doi.org/10.3390/cells9030761

Ikram, M., Tabassum, R., Qumar, U., Ali, S., Ul-Hamid, A., Haider, A., Raza, A., Imran, M., & Ali, S. (2020). Promising performance of chemically exfoliated Zr-doped MoS 2 nanosheets for catalytic and antibacterial applications. RSC Advances, 10(35), 20559–20571. https://doi.org/10.1039/D0RA02458A

LEVY, S. (2005). Antibiotic resistance—the problem intensifies. Advanced Drug Delivery Reviews, 57(10), 1446–1450. https://doi.org/10.1016/j.addr.2005.04.001

Levy, S. B. (1998). The Challenge of Antibiotic Resistance. Scientific American, 278(3), 46–53. https://doi.org/10.1038/scientificamerican0398-46

Li, J., Tang, W., Yang, H., Dong, Z., Huang, J., Li, S., Wang, J., Jin, J., & Ma, J. (2014). Enhanced-electrocatalytic activity of Ni 1−x Fe x alloy supported on polyethyleneimine functionalized MoS 2 nanosheets for hydrazine oxidation. RSC Adv., 4(4), 1988–1995. https://doi.org/10.1039/C3RA42757A

Maciel, M. V. de O., Almeida, A. da R., Machado, M. H., Melo, A. P. Z., Rosa, C. G. da, Freitas, D. Z., Noronha, Carolina Montanheiro Teixeira, G. L., Armas, R. D., & Barreto, P. L. M. (2019). Syzygium aromaticum L . ( Clove ) Essential Oil as a Reducing Agent for the Green Synthesis of Silver Nanoparticles. Open Journal of Applied Sciences, 45–54. https://doi.org/10.4236/ojapps.2019.92005

Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically Thin MoS 2 : A New Direct-Gap Semiconductor. Physical Review Letters, 105(13), 136805. https://doi.org/10.1103/PhysRevLett.105.136805

Melo, A. P. Z., Maciel, M. V. de O. B., Sganzerla, W. G., Almeida, A. de R., Armas, R. D., Machado, M. H., Rosa, C. G., Nunes, R. M., Bertoldi, F. C. B., & Barreto, P. L. M. (2020). Antibacterial activity , morphology , and physicochemical stability of biosynthesized silver nanoparticles using thyme ( Thymus vulgaris ) essential oil Antibacterial activity , morphology , and physicochemical stability of biosynthesized silver nanoparti. Materials Research Express, 015087. https://doi.org/https://doi.org/10.1088/2053-1591/ab6c63

Mohan, M., Unni, K. N. N., & Rakhi, R. B. (2019). 2D organic-inorganic hybrid composite material as a high-performance supercapacitor electrode. Vacuum, 166, 335–340. https://doi.org/10.1016/j.vacuum.2018.10.051

More, P. R., Pandit, S., Filippis, A. De, Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2), 369. https://doi.org/10.3390/microorganisms11020369

Nam, G., Rangasamy, S., Purushothaman, B., & Song, J. M. (2015). The Application of Bactericidal Silver Nanoparticles in Wound Treatment. Nanomaterials and Nanotechnology, 5, 23. https://doi.org/10.5772/60918

Nehme, R., Andrés, S., Pereira, R. B., Ben Jemaa, M., Bouhallab, S., Ceciliani, F., López, S., Rahali, F. Z., Ksouri, R., Pereira, D. M., & Abdennebi-Najar, L. (2021). Essential Oils in Livestock: From Health to Food Quality. Antioxidants, 10(2), 330. https://doi.org/10.3390/antiox10020330

Roy, S., Mondal, A., Yadav, V., Sarkar, A., Banerjee, R., Sanpui, P., & Jaiswal, A. (2019). Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS 2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress. ACS Applied Bio Materials, 2(7), 2738–2755. https://doi.org/10.1021/acsabm.9b00124

Shaheen, H. M. (2016). Wound healing and silver nanoparticles. Global Drugs and Therapeutics, 1(1). https://doi.org/10.15761/GDT.1000105

Vinicius de Oliveira Brisola Maciel, M., da Rosa Almeida, A., Machado, M. H., Elias, W. C., Gonçalves da Rosa, C., Teixeira, G. L., Noronha, C. M., Bertoldi, F. C., Nunes, M. R., Dutra de Armas, R., & Manique Barreto, P. L. (2020). Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatalysis and Agricultural Biotechnology, 28, 101746. https://doi.org/10.1016/j.bcab.2020.101746

Wei, C., Ma, Z., Qiao, J., Lin, J., & Li, G. (2020). Effects of different drying methods on volatile composition of Melaleuca alternifolia essential oil. IOP Conference Series: Earth and Environmental Science, 559(1), 012010. https://doi.org/10.1088/1755-1315/559/1/012010

Winchester, A., Ghosh, S., Feng, S., Elias, A. L., Mallouk, T., Terrones, M., & Talapatra, S. (2014). Electrochemical Characterization of Liquid Phase Exfoliated Two-Dimensional Layers of Molybdenum Disulfide. ACS Applied Materials & Interfaces, 6(3), 2125–2130. https://doi.org/10.1021/am4051316

Yılmaz, G. E., Göktürk, I., Ovezova, M., Yılmaz, F., Kılıç, S., & Denizli, A. (2023). Antimicrobial Nanomaterials: A Review. Hygiene, 3(3), 269–290. https://doi.org/10.3390/hygiene3030020

Zhang, Weiwei, Kuang, Z., Song, P., Li, W., Gui, L., Tang, C., Tao, Y., Ge, F., & Zhu, L. (2022). Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Healing Therapy. Nanomaterials, 12(11), 1865. https://doi.org/10.3390/nano12111865

Zhang, Wentao, Shi, S., Wang, Y., Yu, S., Zhu, W., Zhang, X., Zhang, D., Yang, B., Wang, X., & Wang, J. (2016). Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale, 8(22), 11642–11648. https://doi.org/10.1039/C6NR01243D

Zhao, Y., Jia, Y., Xu, J., Han, L., He, F., & Jiang, X. (2021). The antibacterial activities of MoS 2 nanosheets towards multi-drug resistant bacteria. Chemical Communications, 57(24), 2998–3001. https://doi.org/10.1039/D1CC00327E

Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., & Zhang, H.-L. (2011). A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angewandte Chemie International Edition, 50(46), 10839–10842. https://doi.org/10.1002/anie.201105364

Downloads

Published

18/05/2024

How to Cite

NASCIMENTO FILHO, C. A. do; SILVA JR , F. A. G. da .; COSTA, M. M. da .; OLIVEIRA , H. P. de . Antibacterial activity of molybdenum disulfide and green silver nanoparticles reduced by tea tree essential oil compounds. Research, Society and Development, [S. l.], v. 13, n. 5, p. e6713545818, 2024. DOI: 10.33448/rsd-v13i5.45818. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45818. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences