Antibacterial activity of molybdenum disulfide and green silver nanoparticles reduced by tea tree essential oil compounds
DOI:
https://doi.org/10.33448/rsd-v13i5.45818Keywords:
Tea tree; Silver nanoparticles; Molybdenum disulfide; Antibacterial.Abstract
The increasing resistance of microorganisms against antibiotics puts at risk the human being. This event requires urgently developing strategies for producing alternative antibacterial agents. The combination of green silver nanoparticles (reduced by essential oil) and molybdenum disulfide can be synergistically explored given the interaction of components. Herein, it is reported the response of isolated and combined components with resulting outstanding kinetics of kill-time (complete elimination of Staphylococcus aureus and Escherichia coli after four hours of contact), effective action against biofilm formation (~99% of inhibition in the biofilm formation). These results confirm that the intercalation of silver nanoparticles between exfoliated sheets of MoS2 represents a promising strategy to develop efficient antibacterial agents against Gram-positive and Gram-negative bacteria.
References
Agnihotri, S., & Dhiman, N. K. (2017). Development of Nano-Antimicrobial Biomaterials for Biomedical Applications (pp. 479–545). https://doi.org/10.1007/978-981-10-3328-5_12
Anderson, K., Poulter, B., Dudgeon, J., Li, S.-E., & Ma, X. (2017). A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS2. Sensors, 17(8), 1807. https://doi.org/10.3390/s17081807
Awasthi, G. P., Adhikari, S. P., Ko, S., Kim, H. J., Park, C. H., & Kim, C. S. (2016). Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. Journal of Alloys and Compounds, 682, 208–215. https://doi.org/10.1016/j.jallcom.2016.04.267
Bharadwaj, K. K., Rabha, B., Pati, S., Choudhury, B. K., Sarkar, T., Gogoi, S. K., Kakati, N., Baishya, D., Kari, Z. A., & Edinur, H. A. (2021). Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). Nanomaterials, 11(8), 1999. https://doi.org/10.3390/nano11081999
Bodík, M., Annušová, A., Hagara, J., Mičušík, M., Omastová, M., Kotlár, M., Chlpík, J., Cirák, J., Švajdlenková, H., Anguš, M., Roldán, A. M., Veis, P., Jergel, M., Majkova, E., & Šiffalovič, P. (2019). An elevated concentration of MoS 2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoO x nanoparticles. Physical Chemistry Chemical Physics, 21(23), 12396–12405. https://doi.org/10.1039/C9CP01951K
Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences, 22(13), 7202. https://doi.org/10.3390/ijms22137202
CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Performance Standards for Antimicrobial Susceptibility Testing. 29th Ed. CLSI Supplement M100, 296.
Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, Volume 12, 3903–3910. https://doi.org/10.2147/IDR.S234610
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., & Chhowalla, M. (2011). Photoluminescence from Chemically Exfoliated MoS 2. Nano Letters, 11(12), 5111–5116. https://doi.org/10.1021/nl201874w
Feng, X., Xing, W., Song, L., & Hu, Y. (2014). In situ synthesis of a MoS 2 /CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. Journal of Materials Chemistry A, 2(33), 13299. https://doi.org/10.1039/C4TA01885K
Guimarães, M.L., da Silva, F. A. G., da Costa, M. M., & de Oliveira, H. P. (2020). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscience (Switzerland), 10(4). https://doi.org/10.1007/s13204-019-01181-4
Guimarães, Milena Lima, & Amarante, J. F. (2021). A importância dos óleos essenciais na síntese verde de nanopartículas metálicas The importance of essential oils in the green synthesis of metallic nanoparticles.
Guimarães, Milena Lima, Amarante, J. F., & Oliveira, H. P. de. (2021). A importância dos óleos essenciais na síntese verde de nanopartículas metálicas. Matéria (Rio de Janeiro), 26(3). https://doi.org/10.1590/s1517-707620210003.1305
Guimarães, Milena Lima, da Silva, F. A. G., de Souza, A. M., da Costa, M. M., & de Oliveira, H. P. (2022a). All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. Applied Nanoscience, 12(2), 129–138. https://doi.org/10.1007/s13204-021-02249-w
Guimarães, Milena Lima, da Silva, F. A. G., de Souza, A. M., da Costa, M. M., & de Oliveira, H. P. (2022b). All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. Applied Nanoscience 2021 12:2, 12(2), 129–138. https://doi.org/10.1007/S13204-021-02249-W
Guimarães, Milena Lima, Silva Jr, F. A. G., Costa, M. M., & Oliveira, H. P. (2019). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscience, 0123456789. https://doi.org/10.1007/s13204-019-01181-4
Huang, W., Nie, Y., Zhu, N., Yang, Y., Zhu, C., Ji, M., Wu, D., & Chen, K. (2020). Hybrid Label-Free Molecular Microscopies for Simultaneous Visualization of Changes in Cell Wall Polysaccharides of Peach at Single- and Multiple-Cell Levels during Postharvest Storage. Cells, 9(3), 761. https://doi.org/10.3390/cells9030761
Ikram, M., Tabassum, R., Qumar, U., Ali, S., Ul-Hamid, A., Haider, A., Raza, A., Imran, M., & Ali, S. (2020). Promising performance of chemically exfoliated Zr-doped MoS 2 nanosheets for catalytic and antibacterial applications. RSC Advances, 10(35), 20559–20571. https://doi.org/10.1039/D0RA02458A
LEVY, S. (2005). Antibiotic resistance—the problem intensifies. Advanced Drug Delivery Reviews, 57(10), 1446–1450. https://doi.org/10.1016/j.addr.2005.04.001
Levy, S. B. (1998). The Challenge of Antibiotic Resistance. Scientific American, 278(3), 46–53. https://doi.org/10.1038/scientificamerican0398-46
Li, J., Tang, W., Yang, H., Dong, Z., Huang, J., Li, S., Wang, J., Jin, J., & Ma, J. (2014). Enhanced-electrocatalytic activity of Ni 1−x Fe x alloy supported on polyethyleneimine functionalized MoS 2 nanosheets for hydrazine oxidation. RSC Adv., 4(4), 1988–1995. https://doi.org/10.1039/C3RA42757A
Maciel, M. V. de O., Almeida, A. da R., Machado, M. H., Melo, A. P. Z., Rosa, C. G. da, Freitas, D. Z., Noronha, Carolina Montanheiro Teixeira, G. L., Armas, R. D., & Barreto, P. L. M. (2019). Syzygium aromaticum L . ( Clove ) Essential Oil as a Reducing Agent for the Green Synthesis of Silver Nanoparticles. Open Journal of Applied Sciences, 45–54. https://doi.org/10.4236/ojapps.2019.92005
Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically Thin MoS 2 : A New Direct-Gap Semiconductor. Physical Review Letters, 105(13), 136805. https://doi.org/10.1103/PhysRevLett.105.136805
Melo, A. P. Z., Maciel, M. V. de O. B., Sganzerla, W. G., Almeida, A. de R., Armas, R. D., Machado, M. H., Rosa, C. G., Nunes, R. M., Bertoldi, F. C. B., & Barreto, P. L. M. (2020). Antibacterial activity , morphology , and physicochemical stability of biosynthesized silver nanoparticles using thyme ( Thymus vulgaris ) essential oil Antibacterial activity , morphology , and physicochemical stability of biosynthesized silver nanoparti. Materials Research Express, 015087. https://doi.org/https://doi.org/10.1088/2053-1591/ab6c63
Mohan, M., Unni, K. N. N., & Rakhi, R. B. (2019). 2D organic-inorganic hybrid composite material as a high-performance supercapacitor electrode. Vacuum, 166, 335–340. https://doi.org/10.1016/j.vacuum.2018.10.051
More, P. R., Pandit, S., Filippis, A. De, Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2), 369. https://doi.org/10.3390/microorganisms11020369
Nam, G., Rangasamy, S., Purushothaman, B., & Song, J. M. (2015). The Application of Bactericidal Silver Nanoparticles in Wound Treatment. Nanomaterials and Nanotechnology, 5, 23. https://doi.org/10.5772/60918
Nehme, R., Andrés, S., Pereira, R. B., Ben Jemaa, M., Bouhallab, S., Ceciliani, F., López, S., Rahali, F. Z., Ksouri, R., Pereira, D. M., & Abdennebi-Najar, L. (2021). Essential Oils in Livestock: From Health to Food Quality. Antioxidants, 10(2), 330. https://doi.org/10.3390/antiox10020330
Roy, S., Mondal, A., Yadav, V., Sarkar, A., Banerjee, R., Sanpui, P., & Jaiswal, A. (2019). Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS 2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress. ACS Applied Bio Materials, 2(7), 2738–2755. https://doi.org/10.1021/acsabm.9b00124
Shaheen, H. M. (2016). Wound healing and silver nanoparticles. Global Drugs and Therapeutics, 1(1). https://doi.org/10.15761/GDT.1000105
Vinicius de Oliveira Brisola Maciel, M., da Rosa Almeida, A., Machado, M. H., Elias, W. C., Gonçalves da Rosa, C., Teixeira, G. L., Noronha, C. M., Bertoldi, F. C., Nunes, M. R., Dutra de Armas, R., & Manique Barreto, P. L. (2020). Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatalysis and Agricultural Biotechnology, 28, 101746. https://doi.org/10.1016/j.bcab.2020.101746
Wei, C., Ma, Z., Qiao, J., Lin, J., & Li, G. (2020). Effects of different drying methods on volatile composition of Melaleuca alternifolia essential oil. IOP Conference Series: Earth and Environmental Science, 559(1), 012010. https://doi.org/10.1088/1755-1315/559/1/012010
Winchester, A., Ghosh, S., Feng, S., Elias, A. L., Mallouk, T., Terrones, M., & Talapatra, S. (2014). Electrochemical Characterization of Liquid Phase Exfoliated Two-Dimensional Layers of Molybdenum Disulfide. ACS Applied Materials & Interfaces, 6(3), 2125–2130. https://doi.org/10.1021/am4051316
Yılmaz, G. E., Göktürk, I., Ovezova, M., Yılmaz, F., Kılıç, S., & Denizli, A. (2023). Antimicrobial Nanomaterials: A Review. Hygiene, 3(3), 269–290. https://doi.org/10.3390/hygiene3030020
Zhang, Weiwei, Kuang, Z., Song, P., Li, W., Gui, L., Tang, C., Tao, Y., Ge, F., & Zhu, L. (2022). Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Healing Therapy. Nanomaterials, 12(11), 1865. https://doi.org/10.3390/nano12111865
Zhang, Wentao, Shi, S., Wang, Y., Yu, S., Zhu, W., Zhang, X., Zhang, D., Yang, B., Wang, X., & Wang, J. (2016). Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale, 8(22), 11642–11648. https://doi.org/10.1039/C6NR01243D
Zhao, Y., Jia, Y., Xu, J., Han, L., He, F., & Jiang, X. (2021). The antibacterial activities of MoS 2 nanosheets towards multi-drug resistant bacteria. Chemical Communications, 57(24), 2998–3001. https://doi.org/10.1039/D1CC00327E
Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., & Zhang, H.-L. (2011). A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angewandte Chemie International Edition, 50(46), 10839–10842. https://doi.org/10.1002/anie.201105364
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Carlos Alves do Nascimento Filho; Fernando Antonio Gomes da Silva Jr ; Mateus Matiuzzi da Costa; Helinando Pequeno de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.