Antimicrobial effectiveness and Ag+ release in antimicrobial-modified PMMA: A systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v13i8.46512

Keywords:

Incorporation; Acrylic resin; Antimicrobial activity; Ion release; Silver.

Abstract

Silver, a long-term ionic release antimicrobial, is incorporated into polymethylmethacrylate (PMMA) in order to reduce bacterial adhesion to polymeric materials and increase the longevity of rehabilitation, given the prevalence of pathologies. The aim was to answer: "What is the correlation between ionic release and antimicrobial activity of acrylic resins incorporated with silver?". The search strategy was applied to the PubMed, ScienceDirect, Embase and Scopus databases. The articles were selected in two phases according to eligibility criteria. The risk of bias was assessed using the quasi experimental studies (non-randomized experimental studies) tool from the Joanna Briggs Institute (JBI). A total of 538 articles were found in the databases, of which 28 were duplicated and were excluded. After first reading, 6 studies were selected for full reading, 5 of which made up this review. Silver was evaluated in different incorporations, which had proven antimicrobial efficacy, given its ionic release. No meta-analysis was carried out due to the heterogeneity of the data. The included studies showed a directly proportional correlation between ionic release and antimicrobial activity in PMMA incorporated with silver-containing agents.

References

Al Sunbul, H., Silikas, N., & Watts, D. C. (2016). Polymerization shrinkage kinetics and shrinkage stress in dental resin-composites. Dental Materials, 32(8), 998-1006.

An, S., Evans, J. L., Hamlet, S., & Love, R. M. (2021). Incorporation of antimicrobial agents in denture base resin: A systematic review. Journal of Prosthetic Dentistry, 126(2), 188-195.

Arnold, R. R., Wei, H. H., Simmons, E., Tallury, P., Barrow, D. A., & Kalachandra, S. (2008). Antimicrobial activity and local release characteristics of chlorhexidine diacetate loaded within the dental copolymer matrix, ethylene vinyl acetate. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 506-513.

Bapat, R. A., Chaubal, T. V., Joshi, C. P., et al. (2018). An overview of application of silver nanoparticles for biomaterials in dentistry. Materials Science and Engineering: C, 91, 881-898.

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13), 7202.

Cao, W., & Zhang, Y. (2018). Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. Journal of Materials Science: Materials in Medicine, 29(11), 162.

Cordeiro, A. M., Oliveira, G. M., Rentería, J. M., & Guimarães, C. A. (2007). Revisão sistemática: uma revisão narrativa. Revista do Colégio Brasileiro de Cirurgiões, 34(6), 428–431. https://doi.org/10.1590/S0100-69912007000600012

Damm, C., & Munstedt, H. (2008). Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Applied Physics A, 91(3), 479-486.

de Lima, R., Seabra, A. B., & Durán, N. (2012). Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, 32(11), 867-879.

Felton, D., Cooper, L., Duqum, I., Minsley, G., Guckes, A., Haug, S., et al. (2011). Evidence-based guidelines for the care and maintenance of complete dentures: A publication of the American College of Prosthodontists. Journal of the American Dental Association, 142(1S), 1S–20S.

Fan, C., Chu, L., Rawls, H. R., Norling, B. K., Cardenas, H. L., & Whang, K. (2011). Development of an antimicrobial resin—A pilot study. Dental Materials, 27(4), 322-328.

Ferreira, I., Sahm, B. D., Alves, O. L., Agnelli, J. A. M., & Dos Reis, A. C. (2024). Does the incorporation of graphene oxide into PMMA influence its antimicrobial activity? European Journal of Prosthodontics and Restorative Dentistry. https://doi.org/10.1922/EJPRD_2651Ferreira07

Furno, F., Morley, K. S., Wong, B., et al. (2004). Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 54(6), 1019-1024.

Gligorijević, N., Mihajlov-Krstev, T., Kostić, M., Nikolić, L., Stanković, N., Nikolić, V., Dinić, A., Igić, M., & Bernstein, N. (2022). Antimicrobial properties of silver-modified denture base resins. Nanomaterials (Basel), 12(7), 2453.

Gomes, I. S., & Caminha, I. O. (2014). Guia para estudos de revisão sistemática: uma opção metodológica para as Ciências do Movimento Humano. Movimento, 20(1), 395-411.

Hassan, M., Asghar, M., Din, S. U., & Zafar, M. S. (2019). Thermoset polymethacrylate based materials for dental applications. In Elsevier (Ed.), Thermoset Polymethacrylate Based Materials for Dental Applications (pp. 273–308). Amsterdam, The Netherlands: Elsevier.

Jo, J. K., El-Fiqi, A., Lee, J. H., Kim, D. A., Kim, H. W., & Lee, H. H. (2017). Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dental Materials, 33(6).

Kassaee, M. Z., Akhavan, A., Sheikh, N., & Sodagar, A. (2008). Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. Journal of Applied Polymer Science, 110.

Kaur, P., & Luthra, R. (2016). Silver nanoparticles in dentistry: An emerging trend. SRM Journal of Research in Dental Sciences, 7(3), 162.

Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 8013-8024.

Kong, H., & Jang, J. (2008). Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 24(5), 2051-2056.

Kozak, M., & Pawlik, A. (2023). The role of the oral microbiome in the development of diseases. International Journal of Molecular Sciences, 24(6), 5231. https://doi.org/10.3390/ijms24065231

Lee, J. H., Jo, J. K., Kim, D. A., Patel, K. D., Kim, H. W., & Lee, H. H. (2018). Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dental Materials, 34(1).

Machado, A. L., Giampaolo, E. T., Vergani, C. E., Souza, J. F., & Jorge, J. H. (2011). Changes in roughness of denture base and reline materials by chemical disinfection or microwave irradiation: Surface roughness of denture base and reline materials. Journal of Applied Oral Science, 19(5), 521-528.

Maluf, C. V., Peroni, L. V., Menezes, L. R., Coutinho, W., Lourenço, E. J. V., & Telles, D. M. (2020). Evaluation of the physical and antifungal effects of chlorhexidine diacetate incorporated into polymethyl methacrylate. Journal of Applied Oral Science, 28.

Mattos, P. C. (2015). Tipos de revisão de literatura. Unesp, 1-9. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf

Monteiro, D. R., Gorup, L. F., Takamiya, A. S., de Camargo, E. R., Filho, A. C., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(1), 103-110.

Monteiro, D. R., Gorup, L. F., Takamiya, A. S., de Camargo, E. R., Filho, A. C., & Barbosa, D. B. (2012). Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. Journal of Prosthodontics, 21(1), 7-15.

Mukai, M. K., Iegami, C. M., Cai, S., Stegun, R. C., Galhardo, A. P., & Costa, B. (2023). Antimicrobial effect of silver nanoparticles on polypropylene and acrylic resin denture bases. Journal of Clinical and Experimental Dentistry, 15(1), e39.

O’Donnell, L. E., Smith, K., Williams, C., Nile, C. J., Lappin, D. F., Bradshaw, D., et al. (2016). Dentures are a reservoir for respiratory pathogens. Journal of Prosthodontics, 25(2), 99–104.

Patil, S. B., Naveen, B. H., Patil, N. P., & Sajjan, S. (2006). Comparative evaluation of physical properties and impact strength of glass reinforced acrylic denture base resin. Indian Journal of Dental Research, 17(4), 167.

Pauksch, L., Hartmann, S., Rohnke, M., Szalay, G., Alt, V., & Schnettler, R. (2014). Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomaterialia, 10(1), 439-449.

Phillips, K. S., & Applegate, B. M. (2010). Polymeric medical devices with antibacterial activity. Journal of Wound Care, 19(9), 320-324.

Raszewski, Z., & Jaegermann, Z. (2017). The influence of denture cleansers on the hardness of the soft lining materials. Journal of Clinical and Experimental Dentistry, 9(4), e562.

Raszewski, Z., & Jaegermann, Z. (2018). The effect of denture cleansers on the surface roughness and hardness of selected soft lining materials. International Journal of Prosthodontics, 31(2), 204-205.

Silva, L. M. R., Matos, J. D. M., Albuquerque, R. F., Valente, M. L. A., Bagnato, V. S., & Souza Rastelli, A. N. (2021). In vitro evaluation of the impact of incorporation of silver vanadate nanoparticles on the physical and mechanical properties of denture base acrylic resins. Materials Science and Engineering: C, 119, 111555.

Singh, S., Pal, B., & Goel, S. (2018). Antimicrobial efficacy of silver nanoparticles in denture cleansers against Candida species. Indian Journal of Dental Research, 29(6), 788.

Su, J., Wang, X., Lu, H., Yang, G., & McIntyre, R. (2021). Antibacterial activity of polymethyl methacrylate-based dental materials incorporated with titanium dioxide nanoparticles. International Journal of Molecular Sciences, 22(7), 3670.

Tahmasbi, S., & Yadegar, A. (2020). Silver nanoparticles and oral microbiome: Mechanisms of action and application in dentistry. Journal of Research in Medical and Dental Science, 8(3), 183.

Tamayo, L., Zapata, P. A., Atala, D. I., & Yazdani-Pedram, M. (2014). Enhanced antibacterial activity of materials incorporated with zinc oxide nanoparticles: A mini review. International Journal of Biomaterials, 2014, 967524.

Venkatesan, P., Subramanian, G. S., Santhanalakshmi, M., & Mani, R. (2014). Comparative evaluation of antimicrobial activity of nanosilver and commercial denture disinfectants. Indian Journal of Dental Research, 25(2), 204.

Wang, X., Zhang, K., & Ma, Y. (2019). New strategies for the improvement of PMMA based dental resins: A review. International Journal of Biomaterials, 2019, 3012081.

Wei, H. H., Wung, Y. H., Barrow, D. A., Chow, C. M., & Kalachandra, S. (2007). Evaluation of chlorhexidine release from an experimental denture soft lining material. Dental Materials Journal, 26(2), 228-236.

Wei, H. H., Rupp, N. W., & Kalachandra, S. (2006). Evaluation of an experimental chlorhexidine-containing urethane dimethacrylate dental composite material. Dental Materials, 22(6), 546-551.

Wady, A. F., Machado, A. L., Zucolotto, V., Zamperini, C. A., Bernardi, M. I., & Vergani, C. E. (2012). Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. Journal of Applied Microbiology, 112(6), 1163-1172.

Wright, J. B., Lam, K., & Burrell, R. E. (1998). Wound management in an era of increasing bacterial antibiotic resistance: A role for topical silver treatment. American Journal of Infection Control, 26(6), 572-577.

Zhang, Y., Qiu, Y., Blanchard, C., He, L., & Liao, S. (2018). Preparation and characterization of silver sulfadiazine-loaded PMMA denture base resin with enhanced antimicrobial properties. Journal of Prosthetic Dentistry, 120(4).

Zhao, L., Wang, H., Huo, M., & Zhao, F. (2014). Fabrication of antibacterial PMMA-based dental resin with nanostructured TiO2 and zinc oxide. Journal of Nanomaterials, 2014, 305615.

Downloads

Published

06/08/2024

How to Cite

HECK, M. C. F. .; FERREIRA, I.; REIS, A. C. dos . Antimicrobial effectiveness and Ag+ release in antimicrobial-modified PMMA: A systematic review . Research, Society and Development, [S. l.], v. 13, n. 8, p. e1813846512, 2024. DOI: 10.33448/rsd-v13i8.46512. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46512. Acesso em: 5 jan. 2025.

Issue

Section

Review Article