Rheological assessment of the interaction between hydrophobic nanoclay and xanthan gum in saline environment, for application in drilling nanofluid

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4669

Keywords:

Nanoclay; Xanthan; Drilling Nanofluid; Rheology.

Abstract

In the last decade, exploration in high temperature and pressure wells has motivated the improvement of drilling fluids with the application of nanoparticles. In this context, nanoclay, the most available of nanoparticles, has been applied in the development of nanofluids, mainly associated with polymers. In parallel, among the polymers used, xanthan gum has been little explored for this purpose. In this work, the interaction between xanthan gum, hydrophobic nanoclay, sodium and calcium chloride and their influence on the rheological parameters of the mixture was evaluated in solution. The influence of temperature and hydration time on the rheological parameters of the mixture was also evaluated. For this purpose, nanoclay was first characterized with XRF, XRD and TGA. Then, a complete factorial design 24 was adopted, varying the concentrations of nanoclay, xanthan, sodium and calcium chlorides. Third, a Doehlert Matrix of the 7x5x3 type was adopted, varying the concentrations of nanoclay, xanthan and temperature, with the concentrations of the constant salts. In the fourth, select the effect of the hydration time on the color rheological parameters. Finally, Conductivity and Potential Zetas of sizes were verified, varying the concentration of the components and the hydration time of the mixtures. It was concluded that the interactions between the components of the mixture do not stabilize; the temperature, the salts have no significant influence on the rheology of the mixture; nanoclay in concentrations not exceeding 5% (m/v) interacts with the Minimum Shear Stress; the rheological parameters stabilize after 96h of hydration.

References

Abdo J & Haneef MD (2013). Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Appl. Clay Sci., 86, 76–82. doi: 10.1016/j.clay.2013.10.017

Abdo J (2014). Nano-attapulgite for improved tribological properties of drilling fluids. Surf. Interface Anal., 46, 882–887. doi: 10.1002/sia.5472

Abdo J, AL-Sharji H & Hassan E. (2016). Effects of nano-sepiolite on rheological properties and filtration loss of water-based drilling fluids. Surf. Interface Anal., 48(7), 522–526. doi: 10.1002/sia.5997

Abdo, M. I., Al-sabagh, A. M. & Dardir, M. M. (2013). Evaluation of Egyptian bentonite and nano-bentonite as drilling mud. Egypt. J. Pet., 22(1), 53–59. doi: 10.1016/j.ejpe.2012.07.002

Abu-Jdayil, B. (2011). Rheology of sodium and calcium bentonite–water dispersions: Effect of electrolytes and aging time. Int. J. Miner. Process., 98(3-4), 208–213. doi: 10.1016/j.minpro.2011.01.001

Aftab, A., Ismail, A. R., Ibupoto, Z. H., Akeiber, H. & Malghani, M. G. K. (2017). Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review. Renew. Sust. Energ. Rev., 76, 1301–1313. doi: 10.1016/j.rser.2017.03.050

Aftab, A., Ismail, A. R., Khokhar, S. & Ibupoto, Z. H. (2016). Novel zinc oxide nanoparticles deposited acrylamide composite used for enhancing the performance of water-based drilling fluids at elevated temperature conditions. J. Petrol. Sci. Eng., 146, 1142–1157. doi: 10.1016/j.petrol.2016.08.014

Al-Bazali, T. M., Zhang, J., Chenevert, M. E. & Sharma, M. M. (2005, October 9-12). Measurement of the Sealing Capacity of Shale Caprocks. Paper presented at the SPE Annual Technical Conference and Exhibition. Dallas, TX: Society Petroleum Engineer. doi: 10.2118/96100-MS

Al-Yasiri, M. S. & Al-Sallami, W. T. (2015). How the Drilling Fluids Can be Made More Efficient by Using Nanomaterials. Am. J. Nano Res. Appl., 3(3), 41-45. doi: 10.11648/j.nano.20150303.12

Al-Yasiri, M., Awad, A., Pervaiz, S. & Wen, D. (2019). Influence of silica nanoparticles on the functionality of water-based drilling fluids. J. Petrol. Sci. Eng., 179, 504–512. doi: 10.1016/j.petrol.2019.04.081

Amanullah, M., Al-Arfaj, M. K. & Al-Abdullatif, Z. A. (2011, March 1-3). Preliminary test results of nano-based drilling fluids for oil and gas field application. Paper presented at the SPE/IADC Drilling Conference and Exhibition. Amsterdam: Society of Petroleum Engineers. doi: 10.2118/139534-MS

Amiri, C. & Sadeghialiabadi, H. (2014). Evaluating the Stability of Colloidal Gas Aphrons in the Presence of Montmorillonite Nanoparticles. Colloid. Surface. A, 457, 212-219. doi: 10.1016/j.colsurfa.2014.05.076

Bailey, L. & Keall, M. (1994). Effect of Clay Polymer Interactions on Shale Stabilization during Drilling. Langmuir, 10(5), 1544-1549. doi: 10.1021/la00017a037

Barry, M. M., Jung, Y., Lee, J. K. & Phuoc, T. X. (2015). Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. J. Petrol. Sci. Eng., 127, 338–346. doi: 10.1016/j.petrol.2015.01.012

Benyounes, K., Mellak, A. & Benchabane, A. (2010). The Effect of Carboxymethylcellulose and Xanthan on the Rheology of Bentonite Suspensions. Energ. Source. Part A, 32, 1634–1643. doi: 10.1080/15567030902842244

Bland, R. G., Mullen, G. A., Gonzalez, Y. N., Harvey, F. E. & Pless, M. L. (2006, November 13-15). HP/HT Drilling Fluids Challenges. Paper presented at the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. Bangkok: Society of Petroleum Engineers. doi: 10.2118/103731-MS

Caenn, R., Darley, H. C. H. & Gray, G. R. (2014). Fluidos de Perfuração e Completação (6 ed.). Rio de Janeiro, RJ: Elsevier.

Cai, J., Chenevert, M. E. & Friedheim, J. (2011, 30 October-2 November). Decreasing water Invasion into Atoka Shale Using Non-modified Silica Nanoparticles. Paper presented at the SPE Annual Technical Conference and Exhibition. Denver, CO: Society Petroleum Engineer. doi: 10.2118/146979-MS

Calado, V. & Montgomery, D. C. (2003). Planejamento de Experimentos Usando Statistica. Rio de Janeiro, RJ: E-paper Serviços Editoriais Ltda.

Chenevert, M. E. (1970). Shale Control with Balanced-Activity Oil-Continuous Muds. J. Pet. Technol., 22(10), 1309-1316. doi: 10.2118/2559-PA

Cheraghian, G. (2017). Application of Nano-Particles of Clay to Improve Drilling Fluid. Int. J. Nanosci.. Nanotechnol., 13(2), 177-186.

Cheraghian, G., Wu, Q., Mostofi, M., Li, M. C., Afrand, M. & Sangwai, J. S. (2018). Effect of a Novel Clay/silica Nanocomposite on Water-Based Drilling Fluids: Improvements in Rheological and Filtration Properties. Colloid. Surface. A, 555, 339-350. doi: 10.1016/j.colsurfa.2018.06.072

Delgado, A., Gonzalez-Caballero, F. & Bruque, J. M. (1986). On the Zeta Potential and Surface Charge Density of Montmorillonite in Aqueous Electrolyte Solutions. J. Colloid Interf. Sci., 113(1), 203-211. doi: 10.1016/0021-9797(86)90220-1

Energy Information Administration. (2017, September 14). EIA projects 28% increase in world energy use by 2040. Retrieved March 27, 2020, from https://www.eia.gov/todayinenergy/detail.php?id=32912.

Environmental Protection Agency. (2010, December 3). Characteristics of Particles: Particle Size Categories. Retrieved December 3, 2018, from http://www.epa.gov/apti/bces/module3/category/ category.htm.

Fejér, I., Kata, M., Erõs, I. & Dekany, I. (2002). Interaction of monovalent cationic drugs with montmorillonite. Colloid. Polym. Sci., 280(4), 37⎯379. doi: 10.1007/s00396-001-0619-2

Ferreira, S. L. C. (2015). Introdução às Técnicas de Planejamento de Experimentos (1 ed.). Salvador, BA: Vento Leste.

Ferreira, S. L. C., Santos, H. C., Fernandes, M. S. & Carvalho, M. S. (2002). Application of Doehlert matrix and factorial designs in optimization of experimental variables associated with preconcentration and determination of molybdenum in sea-water by inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom., 17(2), 115–120. doi: 10.1039/B109087A

Fitzgerald, B. L., McCourt, A. J. & Brangetto, M. (2000, February 23-25). Drilling Fluid Plays Key Role in Developing the Extreme HTHP, Elgin/Franklin Field. Paper presented at the IADC/SPE Drilling Conference. New Orleans, LA: Society of Petroleum Engineers. doi: 10.2118/59188-MS

Golubeva, O. Y., Ul’yanova, N. Y., Kostyreva, T. G., Drozdova, I. A. & Mokeev, M. V. (2013). Synthetic Nanoclays with the Structure of Montmorillonite: Preparation, Structure, and Physico-Chemical Properties. Glass Phys. Chem+, 39(5), 533–539. doi: 10.1134/S1087659613050088

Helmy, A. K., Ferreiro, E. A. & Bussetti, S. G. (1999). Surface Area Evaluation of Montmorillonite. J. Colloid Interfac. Sci., 210(1), 167–171. doi: 10.1006/jcis.1998.5930

Holmberg, K., Shah, D. O. & Shwuger, M. J. (2002). Handbook of applied surface and colloid chemistry (pp.219-250). Chichester: Jonh Wiley e Sons Ltd.

Ismail, A. R., Aftab, A., Ibupoto, Z. H. & Zolkifile, N. (2016). The novel approach for the enhancement of rheological properties of water-based drilling fluids by using multi-walled carbono nanotube, nanosilica and glass beads. J. Petrol. Sci. Eng., 139, 264–275. doi: 10.1016/j.petrol.2016.01.036

Jain, R. & Mahto, V. (2015). Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system. J. Petrol. Sci. Eng., 133, 612–621. doi: 10.1016/j.petrol.2015.07.009

Jain, R., Mahto, V. & Sharma, V. P. (2015). Evaluation of polyacrylamide-grafted-polyethylene glycol/silica nanocomposite as potential additive in water based drilling mud for reactive shale formation. J. Nat. Gas. Sci. Eng., 26, 526–537. doi: 10.1016/j.jngse.2015.06.051

Kelco, C. Q. (2000). Xanthan gum book (8 ed.). Atlanta, GA: C. Q. Kelco.

Khodja, M., Canselier, J. P., Bergaya, F., Fourar, K., Khodja, M., Cohaut, N. & Bemounah, A. (2010). Shale problems and water-based drilling fluid optimisation in the Hassi Messaoud Algerian oil field. Appl. Clay Sci., 49(4), 383-393. doi: 10.1016/j.clay.2010.06.008

Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y. & Tadé; M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chem. Eng. Res. Des., 89(11), 2356–2364. doi: 10.1016/j.cherd.2011.02.023

Lucena, D. V., Lira, H. L. & Amorim, L. V. (2014). Efeito de aditivos poliméricos nas propriedades reológicas e de filtração de fluidos de perfuração. Tecnol. Metal Mater. Miner., 11(1), 66-73. doi: 10.4322/tmm.2014.010

Luckham, P. F. & Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Adv. Colloid Interfac., 82(1-3), 43–92. doi: 10.1016/S0001-8686(99)00005-6

Luporini, S. & Bretas, R. E. S. (2011). Caracterização Reológica da Goma Xantana: Influência de Íons Metálicos Univalente e Trivalente e Temperatura em Experimentos Dinâmicos. Polímeros, 21(3), 188-194. doi: 10.1590/S0104-14282011005000043

Mao, H., Qiu, Z., Shen, Z. & Huang, W. (2015). Hydrophobic associated polymer based silica nanoparticles composite with core–shell structure as a filtrate reducer for drilling fluid at ultra-high temperature. J. Pet. Sci. Eng., 129, 1–14. doi: 10.1016/j.petrol.2015.03.003

Melo, K. C. (2008). Avalição e modelagem reológica de fluidos de perfuração base água (Master’s Thesis). Universidade Federal do Rio Grande do Norte, Natal, RN.

Mélo, T. J. A., Araújo, E. M., Brito, G. F. & Agrawal, P. (2014). Development of nanocomposites from polymer blends: effect of organoclay on the morphology and mechanical properties. J. Alloy Compd., 615, S391-S391. doi: 10.1016/j.jallcom.2013.11.151

Montgomery, D.C. (2001). Design and analysis of experiments (5 ed., pp.590-629). New York, NY: John Wiley & Sons.

Morita, R. Y., Barbosa, R. V. & Kloss, J. R. (2015). Caracterização de Bentonitas Sódicas: Efeito do Tratamento com Surfactante Orgânico Livre de Sal de Amônio. Rev. Virtual Quim.,7(4),1286-1298. doi: 10.5935/1984-6835.20150071

Mukherjee, I., Sarkar, D. & Moulik, S. P. (2010). Interaction of Gums (Guar, Carboxymethylhydroxypropyl Guar, Diutan, and Xanthan) with Surfactants (DTAB, CTAB, and TX-100) in Aqueous Medium. Langmuir, 26(23), 17906–17912. doi: 10.1021/la102717v

Paiva, L. B., Morales, A. R. & Díaz, F. R. V. (2008). Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Ceramica, 54(330), 213-226. doi: 10.1590/S0366-69132008000200012.

Parizad, A., Shahbazi, K. & Tanha, A. A. (2018). Enhancement of polymeric water-based drilling fluid properties using nanoparticles. J. Petrol. Sci. Eng., 170, 813–828. doi: 10.1016/j.petrol.2018.06.081

Perween, S., Thakur, N. K., Beg, M., Sharma, S. & Ranjan, A. (2019). Enhancing the properties of Water based Drilling Fluid using Bismuth Ferrite Nanoparticles. Colloid. Surface. A, 561, 165-177. doi: 10.1016/j.colsurfa.2018.10.060

Planas, N., Dzubak, A. L., Poloni, R., Lin, L. C., McManus, A., McDonald, T. M., … Gagliardi, L. (2013). The Mechanism of Carbon Dioxide Adsorption in an Alkylamine – Functionalized Metal-Organic Framework. J. Am. Chem. Soc., 135(20), 7402-7405. doi: 10.1021/ja4004766

Ponmani, S., William, J. K. M., Samuel, R., Nagarajan, R. & Sangwai, J. S. (2014). Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloid. Surface. A, 443, 2014, p.37–43. doi: 10.1016/j.colsurfa.2013.10.048

Quinino, R. C. & Reis, E. A. (2011). O Coeficiente de Determinação R2 como Instrumento Didático para Avaliar a Utilidade de um Modelo de Regressão Linear Múltipla. Retrieved December 29, 2018, from http://www.est.ufmg.br/ portal/arquivos/rts/PD_28102011_Final.pdf.

Rao, M. A., Rizvi, S. S. H. & Datta, A. K. (2005). Engineering Properties of Foods (3 ed, pp. 461-500). Boca Raton, FL: Taylor and Francis Group.

Rochefort, W. E. & Middleman, S. (1987). Rheology of Xanthan Gum: Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments. J. Rheol., 31, 337-369. doi: 10.1122/1.549953

Rossi, S., Luckham, P. F. & Tadros, T. F. (2003). Influence of non-ionic polymers on the rheological behaviour of Na-montmorillonite clay suspensions. Part II. Homopolymer ethyleneoxide and polypropylene oxide/ polyethylene oxide ABA copolymers. Colloid. Surface. A, 215(1-3), 1-10.

Sadeghalvaad, M & Sabbaghi, S. (2015). The Effect of the TiO2/Polyacrylamide Nanocomposite on Water-Based Drilling Fluid Properties. Powder Technol., 272, 113–119. doi: 10.1016/j.powtec.2014.11.032

Salopek, B., Krasić, D. & Filipović, S. (1992). Measurement and application of zeta-potential. Rud.-geol.- naft. zb., 4, 147-151.

Santos, P. S. (2000). Tecnologia das Argilas: Fundamentos (Vol. 1). São Paulo, SP: Edgard Blücher.

Santos, R. F. A., Reis, M. M., Ueki, M. M., Santos, Z. I. G. & Brito, G. F. (2016, November 6-10). Influência da argila montmorilonita nas propriedades mecânicas e morfológicas de nanocompósitos obtidos a partir de blendas de polietileno/poli (tereftalato de etileno). Paper presented at the 22º Congresso Brasileiro de Engenharia e Ciência dos Materiais. Natal, RN: Associação Brasileira de Cerâmica.

Sena, A. R., Valasques Júnior, G. L., Barretto, I. K. S. P. & Assis, S. A. (2012). Application of Doehlert experimental design in the optimization of experimental variables for the Pseudozyma sp. (CCMB 306) and Pseudozyma sp. (CCMB 300) cell lysis. Ciênc. Tecnol. Aliment.[online], 32(4), 762-767. doi: 10.1590/S0101-20612012005000118.

Shakib, J. T., Kanani, V. & Pourafshary, P. (2016). Nano-clays as additives for controlling filtration properties of water - bentonite suspensions. J. Petrol. Sci. Eng., 138, 257-264. doi: 10.1016/j.petrol.2015.11.018

Shaw, D. J. (1992). Colloid and Surface Chemistry (4 ed., pp.174-243). Oxford: Elsevier Science Ltd.

Slavutsky, A. M., Bertuzzi, M. A. & Armada, M. (2012). Water barrier properties of starch-clay nanocomposite films. Braz. J. Food. Technol., 15(3), 208-218. doi: 10.1590/S1981-67232012005000014

Souza, G. S. (2016). Caracterização reológica de dispersões argilosas com goma xantana para fluidos de perfuração de poços de petróleo (Master’s Thesis). Universidade Federal da Bahia, Salvador, BA.

Speers, R. A. & Tung, M. A. (1986). Concentration and Temperature Dependence of Flow Behavior of Xanthan Gum Dispersions. J. Food Sci., 51(1), 96-98. doi: 10.1111/j.1365-2621.1986.tb10844.x

Stawiński, J., Wierzchoś, J. & Garoa-Gonzalez, M.T. (1990). Influence of Calcium and Sodium Concentration on the Microstructure of Bentonite and Kaolin. Clay. Clay Miner, 38, 617–622. doi: 10.1346/CCMN.1990.0380607

Steiger, R. P. & Leung, P. K. (1992). Quantitative Determination of the Mechanical Properties of Shales. SPE Drilling Engineering, 7(3), 181-185. doi: 10.2118/18024-PA

Thonart, Ph., Paquot, M., Hermans, L. & Alaoui, H. (1985). Xanthan production by Xanthomonas campestris NRRL B-1459 and interfacial approach by zeta potential measurement. Enzyme Microb. Technol., 7(5), 235-238. doi: 10.1016/S0141-0229(85)80009-0

Uddin, F. (2008). Clays, Nanoclays, and Montmorillonite Minerals. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 39(A), 2804-2814.

Verdooren, L. R. (2017). Use of Doehlert Designs for Second-order Polynomial Models. Mathematics and Statistics, 5(2), 62-67. doi: 10.13189/ms.2017.050202

Vipulanandan, C. & Mohammed, A. (2015). Effect of nanoclay on the electrical resistivity and rheological properties of smart and sensing bentonite drilling muds. J. Petrol. Sci. Eng., 130, 86-95. doi: 10.1016/j.petrol.2015.03.020

Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I. & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Appl. Clay Sci., 48(3), 291⎯295. doi: 10.1016/j.clay.2010.01.007

Vryzas, Z., Mahmoud, O., Nasr-El-Din, H. A. & Kelessidis, V. C. (2015). Development and testing of novel drilling fluids using Fe2O3 and SiO2 nanoparticles for enhanced drilling operations. J. Pet. Technol., 68(11), 48-50. doi: 10.2118/1116-0048-JPT

Vryzas, Z., Wubulikasimu, Y., Gerogiorgis, D. I. & Kelessidis, V. C. (2016). Understanding the Temperature Effect on the Rheology of Water-Bentonite Suspensions. Annual Transactions - The Nordic Rheology Society, 24, 199-208.

Wyatt, N. B & Liberatore, M. W. (2010). The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solution. Soft Matter, 6(14), 3346–3352. doi: 10.1039/C000423E

Wyatt, N. B. & Liberatore, M. W. (2009). Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum. J. Appl. Polym. Sci., 114, 4076–4084. doi: 10.1002/app.31093

Wyatt, N. B., Gunther, C. M. & Liberatore, M. W. (2011). Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer, 52(11), 2437-2444. doi: 10.1016/j.polymer.2011.03.053

Xi, Y., Ding, Z., He, H. & Frost, R. L. (2004). Structure of organoclays - an X-ray diffraction and thermogravimetric analysis study. J. Colloid Interf. Sci., 277(1), 116-120. doi: 10.1016/j.jcis.2004.04.053

Xie, W. & Lecourtier, J. (1992). Xanthan behavior in water-fluid drilling fluids. Polym. Degrad. Stabil., 38(2), 155-164.

Xie, W., Gao, Z., Pan, W. P., Hunter, D., Singh, A. & Vaia, R. (2001). Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chem. Mater., 13(9), 2979-2990. doi: 10.1021/cm010305s

Yang, K. K., Wang, X. L. & Wang, Y. Z. (2007). Progress in Nanocomposite of Biodegradable Polymer. J. Ind. Eng. Chem., 13(4), 485-500.

You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., Dai, Q. & Goh, S. W. (2011). Nanoclay-modified asphalt materials: Preparation and characterization. Constr. Build. Mater., 25(2), 1072–1078. doi: 10.1016/j.conbuildmat.2010.06.070

Zhong, L., Oostrom, M., Truex, M. J., Vermeul, V. R. & Szecsody, J. E. (2013). Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater., 244–245, 160–170. doi: 10.1016/j.jhazmat.2012.11.028

Downloads

Published

13/06/2020

How to Cite

SOUZA, F. M. de; SOARES, J. M. D.; OLIVEIRA, H. P. de; RIGOLI, I. C.; LUPORINI, S. Rheological assessment of the interaction between hydrophobic nanoclay and xanthan gum in saline environment, for application in drilling nanofluid. Research, Society and Development, [S. l.], v. 9, n. 7, p. e789974669, 2020. DOI: 10.33448/rsd-v9i7.4669. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4669. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings