Clústeres de alto riesgo de casos de Lepra en la región Nordeste de Brasil: Modelización espaciotemporal retrospectiva y prospectiva

Autores/as

DOI:

https://doi.org/10.33448/rsd-v13i10.47145

Palabras clave:

Lepra; Nordeste de Brasil; Análisis espacial; Series temporales.

Resumen

La lepra, o enfermedad de Hansen, es una enfermedad granulomatosa crónica provocada por la bacteria Mycobacterium leprae, que afecta principalmente el sistema nervioso periférico, la piel y el sistema reticuloendotelial. Afecta a personas que viven en comunidades pobres en países tropicales subdesarrollados y en desarrollo, y se considera una enfermedad tropical desatendida. Brasil ha sido responsable del segundo mayor número de casos, solo detrás de India, y la comprensión de los patrones epidemiológicos y espaciales de la lepra y su relación con factores socioeconómicos es uno de los requisitos para el control efectivo de esta enfermedad. Por este motivo, este trabajo tiene como objetivo evaluar los patrones espaciales y espacio-temporales de los casos de lepra en la región Nordeste de Brasil, entre los años 2001 y 2020. A través de un estudio ecológico, basado en técnicas de análisis espacial utilizando datos secundarios de casos de lepra notificados en el estado del Nordeste. En diecinueve años, de 2001 a 2020, la región Nordeste del país registró 29,817 nuevos casos de la enfermedad. Aunque la tendencia de nuevos casos de lepra ha mostrado una disminución, muchos municipios aún se clasifican como hiperendémicos. Ante estos resultados, recomendamos que en las áreas consideradas hiperendémicas se implemente educación en salud, con el objetivo de concienciar a la población sobre la importancia del tratamiento en las etapas iniciales de la enfermedad, mejorando así el diagnóstico y el tratamiento precoz, lo que podría lograr el control de la enfermedad.

Citas

Anselin, L, (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis. 27, 93–115.

Antunes, D E, Araujo, S, Ferreira, G P, Cunha, A C S R, Costa, A V, Gonçalves, et al., (2013). Identification of clinical, epidemiological and laboratory risk factors for leprosy reactions during and after multidrug therapy. Memorias do Instituto Oswaldo Cruz, v. 108, p. 901-908. https://doi.org/10.1590/0074-0276130222.

Antunes, J L F, & Cardoso, M R A, (2015). Using time series analysis in epidemiological studies. Epidemiol Serv Saúde, 24(3), 565–576. https://doi.org/10.5123/S1679-49742015000300024.

Albuquerque, A R, Silva, J V M, Barreto, E O, Fraga, C A C, Santos, W O, Silva, M S M, et al., (2020). Epidemiological, temporal and spatial dynamics of leprosy in a municipality in northeastern Brazil (2008-2017): an ecological study. Revista da Sociedade Brasileira de Medicina Tropical, v. 53. https://doi.org/10.1590/0037-8682-0246-2020.

Brasil, Ministério da Saúde, (2007). Sistemas de Informações Geográficas e Análise Espacial na Saúde Pública. 2a ed. Brasilía: Fundação Oswaldo Cruz.

Brasil, Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis, (2016). Diretrizes para Vigilância, atenção e eliminação da Hanseníase como problema de saúde pública: técnico-operacional manual. Brasília.

Barbosa, C C, Bonfim, C V, Brito, C M G, Ferreira A T, Gregório V R N, Oliveira, A L, et al., (2018). Spatial analysis of reported new cases and local risk of leprosy in hyper‐endemic situation in Northeastern Brazil. Tropical Medicine & International Health, 23(7), 748-757. https://doi.org/10.1111/tmi.13067.

Barbosa, C C, Bonfim, C V, Brito, C M G, Souza, W V S, Melo, M F O, & Medeiros, Z M, (2020). Spatial analysis of epidemiological and quality indicators of health services for leprosy in hyperendemic areas in Northeastern Brazil. Revista do Instituto de Medicina Tropical de São Paulo, v. 62. https://doi.org/10.1590/S1678-9946202062093.

Chen, Y, (2013). New Approaches for Calculating Moran’s Index of Spatial Autocorrelation. PLoS ONE. 8, e68336. https://doi.org/10.1371/journal.pone.0068336.

Duczmal, L, Kulldorff, M, & Huang, (2006). Evaluation of Spatial Scan Statistics for Irregularly Shaped Clusters. Journal of Computational and Graphical Statistics. 15, 428–442. https://doi.org/10.1198/106186006X112396.

Damasceno, D M, Paz, W S, Souza, C D F, Santo, A D, & Bezerra-Santos, M, (2021). High‐risk transmission clusters of leprosy in an endemic area in the Northeastern Brazil: A retrospective spatiotemporal modelling (2001–2019). Tropical Medicine & International Health. https://doi.org/10.1111/tmi.13657.

Fontes, A N B, Lima, L N G C, Mota, R M S, Almeida, R L F, Pontes, M A, Gonçalves, H S, Frota, C C, et al., (2017). Genotyping of Mycobacterium leprae for better understanding of leprosy transmission in Fortaleza, Northeastern Brazil. PLoS neglected tropical diseases, 11(12), e0006117. https://doi.org/10.1371/journal.pntd.0006117.

Gupta, S K, (2015). Histoid leprosy: review of the literature. International journal of dermatology, 54(11), 1283-1288. https://doi.org/10.1111/ijd.12799.

Hotez, P J, Bottazzi, M E, Fraco-Paredes, C, Ault, S K, & Periago, M R, (2008). The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS neglected tropical diseases, 2(9), e300. https://doi.org/10.1371/journal.pntd.0000300.

Han, X Y, & Silva, F J, (2014). On the age of leprosy. PLoS neglected tropical diseases, 8(2), e2544. https://doi.org/10.1371/journal.pntd.0002544.

IBGE, Instituto Brasileiro de Geografia e Estatística. Brasil, (2020). Portal cidade e estados. http://www.ibge.gov.br/home.

Kulldorff, M, (1997). Theory and Methods A spatial scan statistic. Communications in Statistics. 26, 1481–1496.

Kulldorff, M, (2001). Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society). 164, 61–72. https://doi.org/10.1111/1467-985X.00186.

Matos, A M F, Coelho, A C O, Araújo, L P T, Alves, M J M, Baquero, O S, Duthie, M S, & Teixeira, H C, (2018). Assessing epidemiology of leprosy and socio-economic distribution of cases. Epidemiology & Infection, 146(14), 1750-1755. https://doi.org/10.1017/S0950268818001814.

Miguel, C B, Mota, P B, Afonso, B O, Agostinho, F, Cazzanigam R A, Abreu, C M, et al., (2021). Leprosy morbidity and mortality in Brazil: 2008–2018. The Brazilian Journal of Infectious Diseases, 25(6), 101638. https://doi.org/10.1016/j.bjid.2021.101638.

Nicchio, M V C, Araujo, S, Martins, L C, Pinheiro, A V, Pereira, D C, Borges, A, et al., (2016). Spatial and temporal epidemiology of Mycobacterium leprae infection among leprosy patients and household contacts of an endemic region in Southeast Brazil. Acta tropica, 163, 38-45. https://doi.org/10.1016/j.actatropica.2016.07.019.

Paz, W S; Ramos, R E S; Bezerra L P; Matos, D F; Tavares, D S; Souza, C D F; Bezerra-Santos, M; & Ximenes, R A A, (2023). Temporal trend, high‐risk spatial and spatiotemporal clustering of leprosy indicators in Brazil: A 20‐year ecological and population‐based study. Tropical Medicine & International Health, v. 28, n. 7, p. 517-529.

Pescarini, J M, Nery, J S, et al (2021). Epidemiological characteristics and temporal trends of new leprosy cases in Brazil: 2006 to 2017. Cadernos de saude publica, v. 37. https://doi.org/10.1590/0102-311X00130020.

Reibel, F, Cambau, E, & Aubry, A, (2015). Update on the epidemiology, diagnosis, and treatment of leprosy. Medecine et maladies infectieuses, 45(9), 383-393. https://doi.org/10.1590/abd1806-4841.20197554

Ramos, A C V, Alonso, J B, Berra, T Z, Alves, L S, Júnior, J F M, Santos, F L, et al., (2021). Social inequalities and their association with the leprosy burden in a Brazilian city of low endemicity: An ecological study. Acta Tropica, 218, 105884. https://doi.org/10.1016/j.actatropica.2021.105884.

Scollard, D M, Adams, LB, Gillis, T P, Krahenbuhl, J L, Truman, R W, et al., (2006). The continuing challenges of leprosy. Clinical microbiology reviews, 19(2), 338-381. https://doi.org/10.1128/CMR.19.2.338-381.2006.

Schreuder, P A M, Noto, S, & Richardus, J H, (2016). Epidemiologic trends of leprosy for the 21st century. Clinics in dermatology, 34(1), 24-31. https://doi.org/10.1016/j.clindermatol.2015.11.001

Souza, E. A, Ferreira, A F, Heukelbach, J, Boigny, R N, Alencar, C H, Alberto, N R, et al., (2018). Epidemiology and spatiotemporal patterns of leprosy detection in the state of Bahia, Brazilian Northeast region, 2001–2014. Tropical medicine and infectious disease, 3(3), 79. https://doi.org/10.3390/tropicalmed3030079.

Souza, C D F, Luna, C F, & Magalhães, M A F M, (2019). Spatial modeling of leprosy in the state of Bahia and its social determinants: a study of health inequities. Anais brasileiros de dermatologia, 94, 182-191.

Souza, C D F, Santos, F G B, Leal, T C, & Paiva, J P S, (2019). Trend of leprosy detection rate in Brazil, 1990 to 2016. Anais Brasileiros de Dermatologia, 94(5), 603-607. https://doi.org/10.1016/j.abd.2018.10.003.

Sarode, G, Sarode, S, Anand, R, Jafer, M, Baeshen, H, et al., (2020). Epidemiological aspects of leprosy. Disease-a-Month, 66(7), 100899. https://doi.org/10.1016/j.disamonth.2019.100899.

World Health Organization (WHO), (2019). Global leprosy update, 2018: moving towards a leprosy-free world. Wkly Epidemiol Rec, 94(35/36), 389-411. https://www.who.int/publications/i/item/who-wer9435-36.

World Health Organization (WHO), (2020). Epidemiological review of leprosy in the Western Pacific Region: 1983-2018. http://iris.wpro.who.int/handle/10665.1/14710.

Publicado

26/10/2024

Cómo citar

CLEMENTE, G. S. .; ALMEIDA, D. H. de . Clústeres de alto riesgo de casos de Lepra en la región Nordeste de Brasil: Modelización espaciotemporal retrospectiva y prospectiva. Research, Society and Development, [S. l.], v. 13, n. 10, p. e112131047145, 2024. DOI: 10.33448/rsd-v13i10.47145. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47145. Acesso em: 21 may. 2025.

Número

Sección

Ciencias de la salud