New formulations and future perspectives of glass ionomer cements: A narrative review
DOI:
https://doi.org/10.33448/rsd-v13i11.47401Keywords:
Glass Ionomer Cement; Nanoparticles; Bioactive Materials; Resin; Viscosity.Abstract
Objective: Review and critically analyze the main innovations in glass ionomer cement formulations, identifying trends and future challenges for their clinical application. Methodology: A narrative review was conducted, utilizing databases such as Google Scholar, SciELO, Cochrane, and PubMed. Scientific articles from the last 15 years, in Portuguese and English, addressing innovations in glass ionomer cements, were selected. Inclusion and exclusion criteria were rigorously applied to ensure the relevance of the studies analyzed. Results and Discussion: The results indicated that the use of nanoparticles, resins, and bioactive materials have significantly contributed to improving the properties of glass ionomer cements. However, the scarcity of clinical trials and the diversity in methodologies used in the reviewed studies limit the generalizability of the conclusions. The discussion emphasizes the need for more clinical research to validate laboratory innovations and explore combinations of materials that may offer even more effective solutions. Conclusion: Innovations in glass ionomer cements show considerable potential to transform dental practice, promoting more durable and accessible treatments.
References
AlKahtani R. N. (2018). The implications and applications of nanotechnology in dentistry: A review. The Saudi dental journal, 30(2), 107–116. DOI: https://doi.org/10.1016/j.sdentj.2018.01.002
Amin, F., Rahman, S., Khurshid, Z., Zafar, M. S., Sefat, F., & Kumar, N. (2021). Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review. Materials (Basel, Switzerland), 14(21), 6260. DOI: https://doi.org/10.3390/ma14216260
Amorim, R. G., Frencken, J. E., Raggio, D. P., Chen, X., Hu, X., & Leal, S. C. (2018). Survival percentages of atraumatic restorative treatment (ART) restorations and sealants in posterior teeth: an updated systematic review and meta-analysis. Clinical oral investigations, 22(8), 2703–2725. DOI: https://doi.org/10.1007/s00784-018-2625-5
Ana, I. D., & Anggraeni, R. (2021). Development of bioactive resin modified glass ionomer cement for dental biomedical applications. Heliyon, 7(1), e05944. DOI: https://doi.org/10.1016/j.heliyon.2021.e05944
Bonifácio, C. C., Kleverlaan, C. J., Raggio, D. P., Werner, A., de Carvalho, R. C., & van Amerongen, W. E. (2009). Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. Australian dental journal, 54(3), 233–237. DOI: https://doi.org/10.1111/j.1834-7819.2009.01125.x
Chen, S., Cai, Y., Engqvist, H., & Xia, W. (2016). Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates. Biomatter. 6(1), e1123842. DOI: https://doi.org/10.1080/21592535.2015.1123842
Dhar, V., Pilcher, L., Fontana, M., González-Cabezas, C., Keels, M. A., Mascarenhas, A. K., Nascimento, M., Platt, J. A., Sabino, G. J., Slayton, R., Tinanoff, N., Young, D. A., Zero, D. T., Pahlke, S., Urquhart, O., O'Brien, K. K., & Carrasco-Labra, A. (2023). Evidence-based clinical practice guideline on restorative treatments for caries lesions: A report from the American Dental Association. Journal of the American Dental Association (1939), 154(7), 551–566.e51. DOI: https://doi.org/10.1016/j.adaj.2023.04.011
Diniz, A. C., Bauer, J., Veloso, S. D. A. R., Abreu-Pereira, C. A., Carvalho, C. N., Leitão, T. J., Firoozmand, L. M., & Maia-Filho, E. M. (2023). Effect of Bioactive Filler Addition on the Mechanical and Biological Properties of Resin-Modified Glass Ionomer. Materials (Basel, Switzerland), 16(5), 1765. DOI: https://doi.org/10.1080/21592535.2015.1123842
Elkassas, D., & Arafa, A. (2017). The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine: Nanotechnology. Biology, and Medicine. 13(4), 1543–62. DOI: https://doi.org/10.1016/j.nano.2017.01.018
Fisher, J., Varenne, B., Narvaez, D., & Vickers, C. (2018). The Minamata Convention and the phase down of dental amalgam. Bulletin of the World Health Organization, 96(6), 436–438. DOI: https://doi.org/10.2471/BLT.17.203141
Fook, A. C. B. M., et al. (2008). Materiais odontológicos: Cimentos de ionômero de vidro. Revista Eletrônica de Materiais e Processos. 3(1), 40-45. URL: https://remap.revistas.ufcg.edu.br/index.php/remap/article/viewFile/52/86
Frencken J. E. (2017). Atraumatic restorative treatment and minimal intervention dentistry. British dental journal, 223(3), 183–189. DOI: https://doi.org/10.1038/sj.bdj.2017.664
Ge, K. X., Quock, R., Chu, C. H., & Yu, O. Y. (2023). The preventive effect of glass ionomer cement restorations on secondary caries formation: A systematic review and meta-analysis. Dental materials: official publication of the Academy of Dental Materials, 39(12), e1–e17. DOI: https://doi.org/10.1016/j.dental.2023.10.008
Gjorgievska, E., Van Tendeloo, G., Nicholson, J. W., Coleman, N. J., Slipper, I. J., & Booth, S. (2015). The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microscopy and Microanalysis. 21(2), 392–406. DOI: https://doi.org/10.1017/S1431927615000057
Guimarães, S. F., Amaral, G. M., Miranda, L. V. L. M., Júnior, G. C. C., da Silva Tavares, Y., Teixeira, B. M. R., & Coelho, T. M. B. (2024). Características de compômeros contendo partículas bioativas: Uma revisão integrativa. Revista CPAQV - Centro de Pesquisas Avançadas em Qualidade de Vida. 16(1). DOI: https://doi.org/10.36692/V16N1-21R
Gurgan, S., Kutuk, Z. B., Yalcin Cakir, F., & Ergin, E. (2020). A randomized controlled 10 years follow up of a glass ionomer restorative material in class I and class II cavities. Journal of dentistry, 94, 103175. DOI: https://doi.org/10.1016/j.jdent.2019.07.013
Hilgert, L. A., de Amorim, R. G., Leal, S. C., Mulder, J., Creugers, N. H., & Frencken, J. E. (2014). Is high-viscosity glass-ionomer-cement a successor to amalgam for treating primary molars?. Dental materials : official publication of the Academy of Dental Materials, 30(10), 1172–1178. DOI: https://doi.org/10.1016/j.dental.2014.07.010
Kanık, Ö., & Türkün, L. Ş. (2016). Recent approaches in restorative glass ionomer cements. J. Ege Univ. Sch. Dent, 37, 54-65. URL: https://jag.journalagent.com/eudfd/pdfs/EUDFD_37_2_54_65.pdf
Leal, S., Bonifacio, C., Raggio, D., & Frencken, J. (2018). Atraumatic Restorative Treatment: Restorative Component. Monographs in oral science, 27, 92–102. DOI: https://doi.org/10.1159/000487836
Mîrț, A. L., Ficai, D., Oprea, O. C., Vasilievici, G., & Ficai, A. (2024). Current and future perspectives of bioactive glasses as injectable material. Nanomaterials (Basel), 14(14), 1196. DOI: https://doi.org/10.3390/nano14141196
Naguib, G. N., Alshahrani, A. A., Alshahrani, A. A., & Alshahrani, A. A. (2023). Incorporation of nanoparticles in dental materials: A review of mechanical properties and clinical implications. BMC Oral Health, 23, 897. DOI: https://doi.org/10.1186/s12903-023-03652-1
Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2024). Can glass polyalkenoate (glass-ionomer) dental cements be considered bioactive? A review. Heliyon, 10(3), e25239. DOI: https://doi.org/10.1016/j.heliyon.2024.e25239
Nomoto, R., & McCabe, J. F. (2001). Effect of mixing methods on the compressive strength of glass ionomer cements. Journal of dentistry, 29(3), 205–210. DOI: https://doi.org/10.1016/s0300-5712(01)00010-0
Paradella, T. C., Costa, A. L., & Pereira, M. A. (2013). Cimentos de ionômero de vidro na odontologia moderna. Revista de Odontologia da UNESP. 33(4), 157-61. URL: https://revodontolunesp.com.br/article/588017aa7f8c9d0a098b483e#nav7
Pokharkar, P. M., Shashikiran, N. D., Gaonkar, N., Gugawad, S., Hadakar, S., & Waghmode, S. (2022). Comparative evaluation of bioactivity, fluoride release, shear bond strength, and compressive strength of conventional glass ionomer cement incorporated with three inorganic bioactive nanoparticles: An experimental analysis. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 40(4), 445–452. DOI: https://doi.org/10.4103/jisppd.jisppd_454_22
Pokrowiecki, R., Pałka, K., & Mielczarek, A. (2018). Nanomaterials in Dentistry: a Cornerstone Or a Black box? Nanomedicine, 13(6), 639–667. DOI: https://doi.org/10.2217/nnm-2017-0329
Ribeiro J. C. R., et al. (2013). Avaliação da solubilidade e desintegração de cimentos de ionômero de vidro modificados por resina e compômeros em função de proteção superficial. Revista de Odontologia da UNESP. 35(4), 247-252. URL: https://revodontolunesp.com.br/article/588017df7f8c9d0a098b4953/pdf/rou-35-4-247.pdf
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20(2), DOI.org/10.1590/S0103-21002007000200001.
Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental materials: official publication of the Academy of Dental Materials, 26(5), 471–482. DOI: https://doi.org/10.1016/j.dental.2010.01.005
Schwendicke, F., Basso, M., Markovic, D., Turkun, L. S., & Miletić, I. (2021). Long-term cost-effectiveness of glass hybrid versus composite in permanent molars. Journal of dentistry, 112, 103751. DOI: https://doi.org/10.1016/j.jdent.2021.103751
Schwendicke, F., Göstemeyer, G., Blunck, U., Paris, S., Hsu, L. Y., & Tu, Y. K. (2016). Directly Placed Restorative Materials: Review and Network Meta-analysis. Journal of dental research, 95(6), 613–622. DOI: https://doi.org/10.1177/0022034516631285
Silva, D. O. C. et al. (2021). Cimento de ionômero de vidro e sua aplicabilidade na Odontologia: Uma revisão narrativa com ênfase em suas propriedades. Research, Society and Development. 10(5), e20110514884. DOI: http://dx.doi.org/10.33448/rsd-v10i5.14884.
Silva, LH, Feitosa, SA, Valera, MC, de Araujo, MA, & Tango, RN (2012). Efeito da adição de sílica silanizada nas propriedades mecânicas de resina acrílica termopolimerizável por micro-ondas. Gerodontologia , 29 (2), e1019-e1023. DOI: https://doi.org/10.1111/j.1741-2358.2011.00604.x
Spezzia, S. (2017). Cimento de ionômero de vidro: revisão de literatura. Journal of Oral Investigations, 6(2), 74-88. DOI: https://doi.org/10.18256/2238-510X.2017.v6i2.2134
Swarup, S. J., Rao, A., Boaz, K., Srikant, N., & Shenoy, R. (2014). Pulpal response to nano hydroxyapatite, mineral trioxide aggregate and calcium hydroxide when used as a direct pulp capping agent: an in vivo study. The Journal of clinical pediatric dentistry, 38(3), 201–206. DOI: https://doi.org/10.17796/jcpd.38.3.83121661121g6773
Swetha, V. C., Uloopi, D. L., RojaRamya, K. S., & Chandrasekhar, K. S. (2019). Antibacterial and mechanical properties of pit and fissure sealants containing zinc oxide and calcium fluoride nanoparticles. Contemporary Clinical Dentistry, 10(3), 477. DOI: http://dx.doi.org/10.4103/ccd.ccd_805_18
van Dijken, J. W., & Pallesen, U. (2010). Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up. Clinical oral investigations, 14(2), 217–222. DOI: https://doi.org/10.1007/s00784-009-0287-z
Vieira, I. M., Louro, R. L., Atta, M. T., Navarro, M. F. de L., & Francisconi, P. A. S. (2006). O cimento de ionômero de vidro na odontologia. Revista Saúde, 2( 1), 75-84. Recuperado de http://www.uesb.br/revista/rsc/v2/v2n1a9.pdf
Xia, Y., Zhang, F., Xie, H., & Gu, N. (2008). Nanoparticle-reinforced resin-based dental composites. Journal of dentistry, 36(6), 450–455. DOI: https://doi.org/10.1016/j.jdent.2008.03.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Beatriz Almeida Cardoso Silva; Eduarda Borges Vilasboas Silva; Raquel Aguiar Moraes ; Raylana Santos e Santos; Ana Flávia Soares; Ian Matos Vieira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.