Visceral leishmaniasis: Therapeutic challenges and the potential of microalgae as a source of antileishmanial compounds

Authors

DOI:

https://doi.org/10.33448/rsd-v13i12.47645

Keywords:

Leishmania infantum; Treatment; Bioprospection; Algae; Cyanobacteria.

Abstract

Leishmaniases are diseases caused by protozoa of the Leishmania genus, transmitted by sandflies, manifesting as visceral, cutaneous, or mucocutaneous forms. Classified as a neglected tropical disease, it disproportionately affects vulnerable populations, especially in low-income regions. This narrative literature review aimed to assess current knowledge on the therapeutic potential of microalgal extracts and compounds for the treatment of visceral leishmaniasis. The research was conducted using the PubMed, SciELO, and Google Scholar databases, employing the keywords Leishmania infantum, Visceral Leishmaniasis, Microalgae, Cyanobacteria, Treatment, and Extracts, as well as their combinations, and considering publications from 2013 to 2024. Original studies analyzing microalgae and cyanobacteria as sources of bioactive compounds against Leishmania infantum were prioritized. Current treatments for human visceral leishmaniasis face severe limitations, including toxicity, parasite resistance, and high costs, while therapeutic options for dogs are largely ineffective. Microalgae and cyanobacteria are emerging as promising sources of bioactive compounds with antiprotozoal activity, showing efficacy comparable to certain drugs used in conventional treatments. Therefore, investigating microalgae and cyanobacteria as sources of antileishmanial compounds is crucial, given the limitations of current therapies. These organisms exhibit significant biotechnological potential but remain underexplored. Investments in bioprospecting may reveal safer, more accessible, and more effective therapeutic alternatives to address this global health challenge.

References

Alvar, J., Den Boer, M., & Dagne, D. A. (2021). Towards the elimination of visceral leishmaniasis as a public health problem in East Africa: reflections on an enhanced control strategy and a call for action. The Lancet Global Health, 9 (12), 1763-1769.

Álvarez-Hernández, D.-A., Rivero-Zambrano, L., & Martínez-Juarez, L.-A. García-Rodríguez-Arana, R. (2020). Overcoming the global burden of neglected tropical diseases. Therapeutic Advances in Infectious Disease, 7. doi: 10.1177/2049936120966449.

Barret, M. P., & Croft, S. L. (2012). Management of trypanosomiasis and leishmaniasis. British Medical Bulletin, 104 (1), 175-96.

Basheer, S., Huo, S., Zhu, F., Qian, J., Cui, F., & Zou, B. (2020). Microalgae in human health and medicine. Microalgae biotechnology for food, health and high value products, 149-74.

Beasley, E. A., Mahachi, K. G., & Petersen, C. A. (2022). Possibility of Leishmania transmission via Lutzomyia spp. sand flies within the USA and implications for human and canine autochthonous infection. Current Tropical Medicine Reports, 9 (4), 160-8.

Berry, I., & Berrang-Ford, L. (2016). Leishmaniasis, conflict, and political terror: A spatio-temporal analysis. Social Science & Medicine, 167, 140-9.

Borowitzka, M. (2018). Biology of microalgae. In Microalgae in Health and Disease Prevention. Academic Press, 23-72.

Brasil. (2024). Situação epidemiológica da Leishmaniose Visceral. Ministério Da Saúde. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/l/leishmaniose-visceral/situacao-epidemiologica-da-leishmaniose-visceral

Brasil. (2020). Comissão Nacional de Saúde Pública Veterinária do Conselho Federal de Medicina Veterinária. Guia de Bolso Leishmaniose Visceral, Comissão Nacional de Saúde Pública Veterinária – 1. ed. Brasília - DF: CFMV.

Brasil. Portaria interministerial no.1.426, de 11 de julho de 2008. Proíbe o tratamento de leishmaniose visceral canina com produtos de uso humano ou não registrados no Ministério da Agricultura, Pecuária e Abastecimento. Diário Oficial da República Federativa do Brasil. Poder Executivo, Brasília - DF, 14 jul. 2008. Seção 1. pp. 37.

Bray, P. G., Barrett, M. P., Ward, S. A., & de Koning, H. P. (2003). Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends in parasitology, 19 (5), 232-9.

Brustolin, A. Á., Ramos-Milaré, Á. C. F. H., de Mello, T. F. P., Aristides, S. M. A., Lonardoni, M. V. C., & Silveira, T. G. V. (2022). In vitro activity of cinnamaldehyde on Leishmania (Leishmania) amazonensis. Experimental Parasitology, 236, 108244.

Carneiro, V. M. T., Avila, C. M., Balunas, M. J., Gerwick, W. H. & Pilli, R. A. (2014). Coibacinas A e B: Síntese total e revisão estereoquímica. The Journal of Organic Chemistry , 79 (2), 630-42.

Cecílio, P., Cordeiro-da-Silva, A., & Oliveira, F. (2022). Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Communications biology, 5 (1), 305.

Cerutti, F. L. S., Barbosa, C. R., & Cosmoski, L. D. (2018). Biomedicina e Farmácia: Aproximações. Atena editora.

Chen, C., Tang, T., Shi, Q., Zhou, Z., & Fan, J. (2022). The potential and challenge of microalgae as promising future food sources. Trends in Food Science & Technology, 126, 99-112.

Conceição-Silva, F., & Alves, C. R. (2014). Leishmanioses do continente americano. Editora Fiocruz.

Costa-da-Silva, A. C., Nascimento, D. D. O., Ferreira, J. R., Guimarães-Pinto, K., Freire-de-Lima, L., Morrot, A., ... & Freire-de-Lima, C. G. (2022). Immune responses in leishmaniasis: an overview. Tropical medicine and infectious disease, 7 (4), 54.

De Menezes, J. P. B., Guedes, C. E. S., De Oliveira Almeida Petersen, A. L., Fraga, D. B. M., & Veras, P. S. T. (2015). Advances in development of new treatment for leishmaniasis. BioMed Research International, 2015.

Dias, G. M. C., da Silva Veras, E. F., de Araújo, M. M. M., do Nascimento, J. E., Paixão, H. M., Silva, A. P., ... & Santos, S. S. N. (2024). Leishmaniose: revisão integrativa da literatura. Periódicos Brasil. Pesquisa Científica, 3(2), 435-449.

Dukhyil, A. A. A. B. (2019). Targeting trypanothione reductase of Leishmanial major to fight against cutaneous leishmaniasis. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 19 (4), 388-93.

eBioMedicine. (2023). Leishmania: An urgent need for new treatments. EBioMedicine, 87, 104440.

Fischer, D., Moeller, P., Thomas, S. M., Naucke, T. J., & Beierkuhnlein, C. (2011). Combining climatic projections and dispersal ability: a method for estimating the responses of sandfly vector species to climate change. PLoS neglected tropical diseases, 5 (11), e1407.

Guedes, C. E. S., Dias, B. R. S., Petersen, A. L. O. A., Cruz, K. P., Almeida, N. J., Andrade, D. R., … Veras, P. S. T. (2018). In vitro evaluation of the anti-leishmanial activity and toxicity of PK11195. Memorias Do Instituto Oswaldo Cruz, 113 (4). https://www.arca.fiocruz.br/handle/icict/25026.

Freitas, A. (2022). Leishmaniose visceral canina: Revisão. Pubvet, 16 (10).

Galvis-Ovallos, F., Silva, R. A., Silva, V. G. D., Sabio, P. B., & Galati, E. A. B. (2020). Leishmanioses no Brasil: aspectos epidemiológicos, desafios e perspectivas. Atualidades em Medicina Tropical no Brasil: Protozoários. Rio Branco, AC: Strictu Sensu, 227-52.

Gharbi, K., Fathalli, A., Essid, R., Fassatoui, C., Romdhane, M. S., Limam, F., & Jenhani, A. B. R. (2021). Tunisian inland water microflora as a source of phycobiliproteins and biological activity with beneficial effects on human health. Oceanological and Hydrobiological Studies, 50 (4), 385–97.

González, C., Wang, O., Strutz, S. E., González-Salazar, C., Sánchez-Cordero, V., & Sarkar, S. (2010). Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species. PLoS neglected tropical diseases, 4 (1), e585.

Guiry, M. D. (2024). AlgaeBase. World-wide electronic publication. http://www.algaebase.org.

Hlavacova, J., Votypka, J., & Volf, P. (2013). The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. Journal of medical entomology, 50 (5), 955-958.

Keller, L., Siqueira-Neto, J. L., Souza, J. M., Eribez, K., LaMonte, G. M., Smith, J. E., & Gerwick, W. H. (2020). Palstimolide A: A complex polyhydroxy macrolide with antiparasitic activity. Molecules, 25 (7), 1604.

Lage, V. M. G. B., Deegan, K. R., Santos, G. F., Fernandez, L. G., Barbosa, C. D. J., & da Cunha Lima, S. T. (2023). Antifungal activity of eukaryotic microalgae in dermatophytes. Revista de Ciências Médicas e Biológicas, 22(4), 615-622.

Leishmaniose Visceral (calazar). MSF Brasil.

https://www.msf.org.br/o-que-fazemos/atividadesmedicas/leishmaniose/?utm_source=googlegrants_exiber_com&utm_medium=cpc&utm_campaign=_

Levasseur, W., Perré, P., & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology advances, 41, 107545.

Maatallah, I. A., Akarid, K., & Lemrani, M. (2022). Tissue tropism: Is it an intrinsic characteristic of Leishmania species?. Acta Tropica, 232, 106512.

Magalhães, A. R., Codeço, C. T., Svenning, J. C., Escobar, L. E., Van de Vuurst, P., & Gonçalves-Souza, T. (2023). Neglected tropical diseases risk correlates with poverty and early ecosystem destruction. Infectious Diseases of Poverty, 12 (1), 32.

Maia, C., Conceição, C., Pereira, A., Rocha, R., Ortuño, M., Muñoz, C., ... & Berriatua, E. (2023). The estimated distribution of autochthonous leishmaniasis by Leishmania infantum in Europe in 2005–2020. PLoS neglected tropical diseases, 17(7), e0011497.

Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A review of leishmaniasis: current knowledge and future directions. Current tropical medicine reports, 8, 121-132.

Marcondes, M., & Day, M. J. (2019). Current status and management of canine leishmaniasis in Latin America. Research in Veterinary Science, 123, 261-272.

Mcgwire, B. S., & Satoskar, A. R. (2014). Leishmaniasis: clinical syndromes and treatment. QJM: An International Journal of Medicine, 107 (1), 7-14.

Morales-Yuste, M., Martín-Sánchez, J., & Corpas-Lopez, V. (2022). Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Veterinary Sciences, 9 (8), 387.

Musa, A. M., Younis, B., Fadlalla, A., Royce, C., Balasegaram, M., Wasunna, M., ... & Khalil, E. (2010). Paromomycin for the treatment of visceral leishmaniasis in Sudan: a randomized, open-label, dose-finding study. PLoS neglected tropical diseases, 4 (10), e855.

Nascimento, M. I. X. D. (2023). Avaliação do tratamento da leishmaniose tegumentar e visceral em humanos: uma revisão narrativa. DOI:10.5281/zenodo.10359616. https://revistaft.com.br/perfil-de-pacientes-com-leishimaniose-tegumentar-e-visceral-no-brasil-uma-revisao-integrativa/.

Nery, G., Becerra, D. R., Borja, L. S., Souza, B. M., Franke, C. R., Veras, P. S., ... & Barrouin-Melo, S. M. (2017). Avaliação da infectividade parasitária a Lutzomyia longipalpis por xenodiagnóstico em cães tratados para leishmaniose visceral naturalmente adquirida. Pesquisa Veterinária Brasileira, 37, 701-7.

Neto, P. T. P. F, Santos, T. R., & Tellis, C. J. M. (2022). Desenvolvimento de novos derivados de plantas medicinais para doenças negligenciadas: uma análise bibliométrica. Repositório Institucional da Fiocruz. https://www.arca.fiocruz.br/handle/icict/51650.

Pagels, F., Amaro, H. M., Tavares, T. G., Amil, B. F., & Guedes, A. C. (2022). Potential of microalgae extracts for food and feed supplementation—A promising source of antioxidant and anti-inflammatory compounds. Life, 12 (11), 1901.

Pavli, A., & Maltezou, H. C. (2010). Leishmaniasis, an emerging infection in travelers. International Journal of Infectious Diseases, 14 (12), e1032-e1039.

Pereira, J. S., Gomes, K. N. F., Pereira, C. D. S. F., Jardim, G. E., Santiago, P. S., Rocha, L. M., & Faria, R. X. (2023). Microalgae and the medicine of the future. Seven Editora.

Pooja, S. (2014). Algae used as medicine and food-a short review. Journal of Pharmaceutical Sciences and Research, 6 (1), 33.

Reguera, R. M., Elmahallawy, E. K., García-Estrada, C., Carbajo-Andrés, R., & Balaña-Fouce, R. (2019). DNA topoisomerases of Leishmania parasites; druggable targets for drug discovery. Current Medicinal Chemistry, 26 (32), 5900-23.

Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394-404.

Roatt, B. M., de Oliveira Cardoso, J. M., De Brito, R. C. F., Coura-Vital, W., de Oliveira Aguiar-Soares, R. D., & Reis, A. B. (2020). Recent advances and new strategies on leishmaniasis treatment. Applied Microbiology and Biotechnology, 104, 8965-77.

Rodrigues, A. R. M. (2018). Produtos naturais na descoberta de fármacos (Master's thesis, Universidade Fernando Pessoa (Portugal)).

Santiago, A. S., Pita, S. D. R., & Guimarães, E. T. (2021). Leishmaniasis treatment, current therapy limitations and new alternative requirements: A narrative review. Research, Society and Development, 10 (7). DOI: https://doi.org/10.33448/rsd-v10i7.16543.

Sasidharan, S., & Saudagar, P. (2021). Leishmaniasis: where are we and where are we heading?. Parasitology research, 120 (5), 1541-54.

Scarpini, S., Dondi, A., Totaro, C., Biagi, C., Melchionda, F., Zama, D., ... & Lanari, M. (2022). Visceral leishmaniasis: Epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms, 10 (10), 1887.

Schubach, A.O. (2021, 24 de setembro). Tratamento das Leishmanioses. https://www.ppt.fiocruz.br/fioleish/tratamento/.

Semenza, J. C., & Suk, J. E. (2018). Vector-borne diseases and climate change: a European perspective. FEMS microbiology letters, 365 (2), fnx244.

Silva, V. N. S, Da Silva Santos, A. C., Pereira, V. R. A., & Brelaz-De-Castro, M. C. A. (2021). Considerations about leishmaniasis and the current scenario for the development of new treatments. Journal of Tropical Pathology, 50 (4), 255–64.

Silveira, A. V. B., Candido, R., & Franciscato, C. (2024). Antimoniato intralesional para tratamento de leishmaniose tegumentar: Uma revisão de literatura. Research, Society and Development, 13(9), e7913946905-e7913946905.

Simões, M. A., Santos, S. D., Dantas, D. D. M. D. M., & Galvéz, A. O. (2016). Algas cultiváveis e sua aplicação biotecnológica.

Singh, R., Kashif, M., Srivastava, P., & Manna, P. P. (2023). Recent advances in chemotherapeutics for leishmaniasis: Importance of the cellular biochemistry of the parasite and its molecular interaction with the host. Pathogens, 12 (5), 706.

Solano-Gallego, L., Miró, G., Koutinas, A., Cardoso, L., Pennisi, M. G., Ferrer, L., ... & Baneth, G. (2011). LeishVet guidelines for the practical management of canine leishmaniosis. Parasites & vectors, 4, 1-16.

Soni, V., Chandel, S., Pandey, V., Asati, S., Jain, P., Jain, A., & Tekade, R. K. (2019). Novel Therapeutic Approaches for the Treatment of Leishmaniasis. In Biomaterials and Bionanotechnology (pp. 263-300). Academic Press.

Steverding, D. (2017). The history of leishmaniasis. Parasites & vectors, 10, 1-10.

Tinoco, N. A., Teixeira, C. M. L., & de Rezende, C. M. (2015). O Gênero Dunaliella: Biotecnologia e Aplicações. Revista Virtual de Química, 7 (4), 1421-40.

Tiwari, N., Gedda, M. R., Tiwari, V. K., Singh, S. P., & Singh, R. K. (2018). Limitations of current therapeutic options, possible drug targets and scope of natural products in control of leishmaniasis. Mini Reviews in Medicinal Chemistry, 18 (1), 26-41.

Torres, F. A., Passalacqua, T. G., Velásquez, A., Souza, R. A. D., Colepicolo, P., & Graminha, M. A. (2014). New drugs with antiprotozoal activity from marine algae: a review. Revista Brasileira de Farmacognosia, 24, 265-76.

Trájer, A. J., Bede-Fazekas, Á., Hufnagel, L., Horváth, L., & Bobvos, J. (2013). The effect of climate change on the potential distribution of the European Phlebotomus species. Applied Ecology and Environmental Research, 11 (2), 189-208.

Vaitkevicius-Antão, V., Moreira-Silva, J., Reino, I. B. D. S. M., Melo, M. G. N. D., Silva-Júnior, J. N. D., Andrade, A. F. D., ... & Paiva-Cavalcanti, M. D. (2022). Therapeutic Potential of Photosynthetic Microorganisms for Visceral Leishmaniasis: An Immunological Analysis. Frontiers in Immunology, 13, 891495.

Vidotti, A. D. S. (2015). Análise proteômica, crescimento e composição celular da microalga Chlorella vulgaris sob autotrofia, mixotrofia e heterotrofia (Doctoral dissertation. Faculdade de Engenharia Química da Universidade Estadual de Campinas. https://hdl.handle.net/20.500.12733/1627452.

Whitton, B. A., & Potts, M. (Eds.). (2007). The ecology of cyanobacteria: their diversity in time and space. Springer Science & Business Media.

World Health Organization. (2020). https://www.who.int/health-topics/leishmaniasis#tab=tab_1.

World Health Organization. (2022). https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.

World Health Organization. (2023). https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.

World Health Organization. (2024). https://www.paho.org/pt/topicos/leishmaniose/leishmaniose-visceral.

Downloads

Published

12/12/2024

How to Cite

SOUSA, J. S. P. de .; LIMA, S. T. da C. .; OLIVEIRA, V. P. de .; NASCIMENTO, E. C. .; GUEDES, C. E. S. . Visceral leishmaniasis: Therapeutic challenges and the potential of microalgae as a source of antileishmanial compounds. Research, Society and Development, [S. l.], v. 13, n. 12, p. e145131247645, 2024. DOI: 10.33448/rsd-v13i12.47645. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47645. Acesso em: 5 jan. 2025.

Issue

Section

Agrarian and Biological Sciences