Sanitary quality of cereals and pseudocereals: Comparison between flour obtained with and without reconstitution

Authors

DOI:

https://doi.org/10.33448/rsd-v13i12.47686

Keywords:

Micotoxin; Poaceae; Regulation; Wheat.

Abstract

The growing demand for whole-grain products is associated with the benefits of the macronutrients and micronutrients found in cereals and pseudocereals. However, contaminant presence, especially mycotoxin-producing fungi on the outer layers of grains, can compromise sanitary quality and pose health risks to consumers. This review aimed to compare the grinding of whole and fractionated grains regarding the microbiological quality of whole cereal and pseudocereal flours. Whole grains present a higher risk of contamination, requiring strict measures from planting to distribution, including proper post-harvest practices, storage, milling, and packaging, with efficient tracking of fungi and mycotoxins. For wheat, the control steps used in refined flour production can be adopted for whole-grain flour, complemented by surface treatments to remove contaminants. For whole corn, type classification criteria need to be stricter than those currently established by legislation. In pseudocereals, classification and control practices are still underdeveloped, requiring specific protocols for each type of grain and its potential contaminants. Additionally, many grains marketed lack clear regulations for contaminant control. Reducing mycotoxin levels in grains will require technological advancements, such as artificial intelligence and Big Data, enabling monitoring and safety improvement throughout the production chain, from planting to the final consumer, contributing to the supply of safer and healthier products.

References

Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E. K. & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119, 770–778.

Andersson, J. (2011). Whole grain wheat – effect of peeling and pearling on chemical composition, taste and colour. Master Thesis: SLU – Swedish University of Agriculture.

Arendt, E. K. & Bello, F. D. (2008). Functional cereal products for those with gluten intolerance. In: Hamaker, B. R. Technology of Functional Cereal Products. Elsevier, 446-475.

Barbieri, D. (1996). Doença celíaca. In: Barbieri, D., Koda, Y. K., eds. Doenças Gastrenterológicas em Pediatria. Atheneu, São Paulo, 176-210.

Bernardi, C. M. G.; Resende, D. O.; Albuquerque, A. C. S. & Tibola, C. (2018) Micotoxinas no trigo. São Paulo: Abitrigo; Passo Fundo: Embrapa Trigo (Cartilha do agricultor).

Bordini, J. G.; Ono, M. A.; Garcia, G. T.; Fazani, V. H. M.; Vizoni, E., Rodrigues, K. C. B.; Hirooka, E. Y. & Ono, E. Y. S. (2017) Impact of industrial dry-milling on fumonisin redistribution in non-transgenic corn in Brazil. Food Chemistry, 220, 438–443.

Borges, J.; Bonomo, R.; De Paula, C. D.; Oliveira, L. & Cesário, M. (2010) Características físico-químicas, nutricionais e formas de consumo de quinoa (Chenopodium quinoa Willd.). Revista Temas Agrarios, 15(1), 9-23.

Boudra, H.; Le Bars, P. & Le Bras, J. (1995) Thermostability of ochratoxin A in wheat under two moisture conditions. Applied and Environmental Microbiology, 61(3), 1156–1158.

Brasil. (2010). IN n° 38. Regulamento técnico de trigo. Ministério da Agricultura, Pecuária e Abastecimento (MAPA).

Brasil. (2011). RDC nº 07. Dispõe sobre limites máximos tolerados (LMT) para micotoxinas em alimentos. Agência Nacional de Vigilância Sanitária (ANVISA).

Brasil. (2021). RDC nº 493. Requisitos de composição e rotulagem dos alimentos contendo cereais para classificação e identificação como integral e para destaque da presença de ingredientes integrais. Agência Nacional de Vigilância Sanitária (ANVISA).

Brasil. (2022). IN nº 160. Estabelece os limites máximos tolerados (LMT) de contaminantes em alimentos. Agência Nacional de Vigilância Sanitária (ANVISA).

Bullerman, L. B. & Bianchini, A. (2007). Stability of mycotoxins during food processing. International Journal of Food Microbiology, 119, 140–146.

Calori-Domingues, M. A.; Almeida, R. R.; Tomiwaka, M. M.; Gallo, C. R.; Gloria, E. M. & Dias, C. T. S. (2007). Ocorrência de desoxinivalenol em trigo nacional e importado utilizado no Brasil. Ciência e Tecnologia de Alimentos, 27(1), 181-185.

Carvajal, M. & Arroyo, G. (1997). Management of aflatoxin contaminated maize in Tarmaulipas, México. Journal of Agricultural and Food Chemistry, 45(4), 1301-1305.

Cheli, F.; Campagnoli, A. & Dell’Orto, V. (2013). Fungal populations and mycotoxins in silages: from occurrence to analysis. Animal Feed Science and Technology, 183(1-2), 1-16.

Costa, P. F. P. (2009). Efeito da radiação gama e da radiação infravermelha na vida de prateleir e nas caracterísitcas tecnológicas da farinha de trigo integral e do pão de forma. Dissertação (Mestrado em Tecnologia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP).

Deng, X.; Cao, S. & Horn, A. L. (2021). Emerging Applications of Machine Learning in Food Safety. Annual Review of Food Science and Technology, 12(1), 513-538.

Doblado-Maldonado, A. F., Pike, O. A., Sweley, J. C., & Rose, D. J. (2012). Key issues and challenges in whole wheat flour milling and storage. Journal of Cereal Science, 56,119-126.

Edwards, S. G.; Dickin, E. T.; Macdonald, S.; Buttler, D.; Hazel, C. M.; Patel, S. & Scudamore, K. A. (2011). Distribution of Fusarium mycotoxins in UK wheat mill fractions. Food Additives & Contaminants: Part A, 28(12), 1694-1704.

FAO. (1997). Micotoxina em alimentos e rações. Food and Agriculture Organization (FAO).

Fric, P.; Gabrovska, D. & Nevoral, J. (2011). Celiac disease, gluten - free diet, and oats. Nutrition Review, 69(2), 107-115.

Garsed, K. & Scott, B. B. (2007). Can oats be taken in a gluten-free diet? A systematic review. Scandinavian Journal of Gastroenterology, 42(2), 171-178.

Gutkoski, L. C. & Pedó, I. (2000). Aveia – composição química, valor nutricional e processamento. São Paulo: Varela.

Hamaker, B. R. (2008). Technology of functional cereal products. CRC Press: Boca Raton.

Health Canada. (2013). The Case of Whole Wheat Flour and Bread http://www.hc-sc.gc.ca/fn-an/label-etiquet/claims-reclam/position_paper-enonce_position-eng.php#a2

Honesey, R. C. (1994). Principles of cereal science and technology. St. Paul: American Association of Cereal Chemists, Inc.

Hussein, H. S. & Brasel, J. M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167, 101-134.

Iamanaka, B. T. (2010). Avaliação da microbiota de grãos de café e dos metabolitos fúngicos na qualidade da bebida. 2010. 78p. Tese de Doutorado. Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas.

IBGE - Instituto Brasileiro de Geografia e Estatística. (2020). Pesquisa Nacional de Saúde: percepção do estado de saúde, estilos de vida e doenças crônicas. Rio de Janeiro: IBGE.

Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A. & Lebrihi, A. (2011). Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A. 28(1), 1590-1609.

Kwiatkowski, A. & Alves, A. P. F. (2007). Importância da detecção e do controle de aflatoxinas em alimentos. SaBios - Revista Saúde e Biologia. 2(2), 45-54.

Lamardo, L. C. A.; Navas, S. A. & Sabino, M. (2006) Desoxinivalenol (DON) em trigo e farinha de trigo comercializados na cidade de São Paulo. Revista Instituto Adolfo Lutz, 65(1), 32-35.

Lazzari, F. A. (1997). Umidade, fungos e micotoxinas na qualidade de sementes, grãos e rações. (2. ed.). Curitiba: [s.n.].

Liu, R. H. (2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46, 207-219.

Marcílio, R.; Amaya-Farfan, J.; Ciacco, C. F. & Spehar, C. R. (2003). Fracionamento do grão de Amaranthus cruentus brasileiro por moagem e suas características composicionais. Food Science and Technology, 23(3), 511–516.

Misra, N. N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M. S.; Upadhyay, R. & Martynenko, A. (2020). IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305-6324.

Montenegro, F. & Clerici, M. T. P. S. (2020). Redução de atividade de água e da carga microbiana na pós-colheita de trigo. In: Tibola, C. S. & Fernandes, J. M. C. (Org.). Micotoxinas no trigo: Estratégias de manejo para minimizar a contaminação. 1ed.Passo Fundo: Embrapa Trigo, 104-121.

Okarter, N. & LIU, R. H. (2010). Health benefits of whole grain phytochemicals. Critical Review in Food Science and Nutrition, 50, 193–208.

Pereira, M. L. & Chang, Y. K. (1993). Contaminantes do trigo e farinha e medidas de sanitizaçäo na industria de moagem e panificação. Higiene Alimentar, 7(26), 20-29.

Pereira, P. S. J. (2001). Tecnologia de Moagem I. SENAI/CE – CERTREM. Fortaleza.

Queiroz, M. B. & Nabeshima, E. H. (2014). Naturalidade e Autenticidade. In: Queiroz, G. C., Rego, R. A., Jardim, D. C. P. (Eds.). Brasil bakery e confectionery trends 2020. Campinas: ITAL, 159-196.

Scarton, M.; Ferreira, A. R.; Tagliapietra, B. L.; Behrens, J. H. & Clerici, M. T. P. S. (2024). Finding wholegrain pasta quality: what are the challenges and opportunities? Food Science and Technology. 44, e00342.

Scussel, V. M. (2002). Fungos e micotoxinas associados a grãos armazenados. In: Lorini, I., Miike, L. H., Scussel, V. M. (Ed.). Armazenagem de grãos. Campinas: Instituto Bio Geneziz, 674-804.

Serna-Saldivar, S. O. (2010). Cereal grains. Cereal Grains: Properties, Processing, and Nutritional Attributes, 1-40.

Silva, L. R. & Vilela, D. M. (2019). Tecnologia de chá e seus processos: uma revisão. Revista UNINGÁ Review, 34(2), 39-50.

Slavin, J. L.; Jacobs, D. & Marquart, L. (2000). Grain Processing and Nutrition. Critical Reviews in Food Science and Nutrition, 40(4), 309–326.

Størsrud, S.; Hulthén, L. R. & Lenner, R. A. (2003). Celiac Disease and Gluten - Free Claims on Uncontaminated Oats Beneficial effects of oats in the gluten - free diet of adults with special reference to nutrient status, symptoms and subjective experiences. British Journal of Nutrition, 90(1), 101-107.

Tibola, C. S.; Fernandes, J. M. C.; Guarienti, E. M. & Nicolau, M. (2015). Distribution of Fusarium mycotoxins in wheat milling process. Food Control, 53, 91-95.

Tibola, C. S.; Lorini, I. & Miranda, M. Z. (2009). Boas Práticas e Sistema APPCC na Pós-Colheita de Trigo. EMBRAPA.

Van der Fels-Klerx, H. J.; Olesen, J. E.; Naustvoll, L. J.; Friocourt, Y.; Mengelers, M. J. B. & Christensen, J. H. (2012). Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins. Food Additives & Contaminants: Part A, 29(10), 1647–1659.

Visscher, T. L. S. & Seidell, J. C. (2001). The Public Health Impact of Obesity. Annual Review of Public Health, 22, 355-375.

Wang, J.; Sufar, E. K.; Bernhoft, A.; Seal, C.; Rempelos, L.; Hasanaliyeva, G.; Zhao, B.; Iversen, P. O.; Baranski, M.; Volakakis, N. & Leifert, C. (2024). Mycotoxin contamination in organic and conventional cereal grain and products: A systematic literature review and meta-analysis. Comprehensive Review in Food Science and Food Safety. 23, e13363.

White, P. J. & Johnson, L. A. (2003). Corn: chemistry and technology. Ed. 2 Saint Paul: American Association of Cereal Chemists.

Zhang, K.; Sun, J.; Fan, M.; Qian, H.; Ying, H.; Li, Y. & Wang, L. (2021). Functional ingredients present in whole-grain foods as therapeutic tools to counteract obesity: Effects on brown and white adipose tissues. Trends in Food Science & Technology, 109, 513-526.

Published

05/12/2024

How to Cite

NABESHIMA, E. H. .; MIRANDA, M. Z. de .; SILVA, L. R. da .; SALVADOR REYES, R.; CLERICI, M. T. P. S. . Sanitary quality of cereals and pseudocereals: Comparison between flour obtained with and without reconstitution. Research, Society and Development, [S. l.], v. 13, n. 12, p. e80131247686, 2024. DOI: 10.33448/rsd-v13i12.47686. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47686. Acesso em: 5 jan. 2025.

Issue

Section

Review Article