Bioenergy production from residual sludge in microbial fuel cells

Authors

DOI:

https://doi.org/10.33448/rsd-v14i4.48596

Keywords:

Bioenergy; Bioelectricity; Voltage; Oxidation ponds; Environmental management.

Abstract

Inadequate sludge management in oxidation ponds leads to the accumulation of organic matter and pollutants, posing an environmental challenge. Microbial fuel cells (MFCs) offer an innovative solution for bioenergy production and wastewater treatment. This systematic review aims to evaluate the effect of bioenergy production from residual sludge using MFCs through a descriptive analysis of existing scientific literature. The results indicate that single-chamber MFCs achieve up to 2400 mW/m², surpassing double- and triple-chamber systems due to lower internal resistance. Alkaline pretreatment and sludge fermentation increase voltage up to 0.89 V with modified graphite electrodes. A C/N ratio and electrical conductivity above 1700 µS/cm enhance stability and energy efficiency, especially in sludge rich in organic matter. These findings demonstrate that MFCs are a sustainable alternative for residual sludge management, reducing environmental impact and optimizing energy efficiency in wastewater treatment.

References

Abbass, R., Amooey, A. & AlJaberi, F. (2024). Electrocoagulation removal of COD and TDS from real municipal wastewater sourced from the Euphrates River using multipole arrangement. Results in Chemistry, 9. https://doi.org/10.1016/j.rechem.2024.101613

Achkir, A., Aouragh, A., El Mahi, M., Lofti, E., Labjar, N., El Bouch, M., Ouahidi, M., Badza, T., Farhane, H., & El Moussaoui, T. (2023). Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerging Contaminants, 9(1). https://doi.org/10.1016/j.emcon.2022.100200

Ahmed, J. & Kim, S. (2024). Polyaniline nanofiber: an excellent anode material for microbial fuel cells. RSC Advances, 14, 34498–34503. https://doi.org/10.1039/D4RA03774J

Ahmed, S., Rozaik, E., & Abdel-Halim, H. (2016). Performance of Single-Chamber Microbial Fuel Cells Using Different Carbohydrate-Rich Wastewaters and Different Inocula. Polish Journal of Environmental Studies, 25(2), 503-510. https://doi.org/10.15244/pjoes/61115

Ali, A. E.-H., Gomaa, O. M., Fathey, R., Abd El Kareem, H. & Abou Zaid, M. M. (2015). Optimización de una celda de combustible microbiana de doble cámara para el tratamiento de aguas residuales domésticas y la producción de electricidad. Journal of Fuel Chemistry and Technology, 43(9), 1092–1099. https://doi.org/10.1016/S1872-5813(15)30032-3

Álvarez, L., García, R., Ulloa, R., Arellano, M. & González, A. (2019). Potencial biotecnológico para la valorización de residuos generados en granjas porcinas y cultivos de trigo. Entreciencias: diálogos en la sociedad del conocimiento, 7(21), 1-21. https://doi.org/10.22201/enesl.20078064e.2019.21.70799

Argota, G. & Iannacone, J. (2020). Sistema de tratamiento mineral pasivo ante el costo ambiental sostenible estimado en la laguna de oxidación Angostura Limón, Ica, Perú. Biotiempo, 17(1), 79-90. https://doi.org/10.31381/biotempo.v17i1.2998

Ayol, A., Biryol, I., Taşkan, E., & Hasar, H. (2021). Enhanced sludge stabilization coupled with microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 46(57), 29529-29540. https://doi.org/10.1016/j.ijhydene.2020.10.143

Azarmanesh, R., Zarghami, M., Hasani, M., Ghiasinejad, H., & Zhang, Y. (2023). Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14, 100453. https://doi.org/10.1016/j.ceja.2023.100453

Badza, T., Tesfamariam, E., & Cogger, C. (2020). Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on South Africa survey. Science of The Total Environment, 721, 137658. https://doi.org/10.1016/j.scitotenv.2020.137658

Banchón, C., Peralta, C., Borodulina, T., Aguirre-Munizaga, M. & Vera-Lucio, N. (2019). On-Line Monitoring of Bioelectricity from a Microbial Fuel Cell Using Fishery-Industry Wastewater. ICT for Agriculture and Environment. CITAMA2019. Advances in Intelligent Systems and Computing, 41–48.

Bazrgar, M., & Mousavi, S. (2016). Effect of casting solvent on the characteristics of Nafion/TiO2 nanocomposite membranes for microbial fuel cell application. International Journal of Hydrogen Energy, 41(1), 476-482. https://doi.org/10.1016/j.ijhydene.2015.11.036

Bélafi, K., Vajda, B. & Nemestóthy, N. (2011). Study on operation of a microbial fuel cell using mesophilic anaerobic sludge. Desalination and Water Treatment, 35(3), 222–226. https://doi.org/10.5004/dwt.2011.2415

Bergel, A., Féron, D., & Mollica, A. (2005). Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communications, 7(9), 900-904. https://doi.org/10.1016/j.elecom.2005.06.006

Bhaduri, S., & Behera, M. (2024). From single-chamber to multi-anodic microbial fuel cells: A review. Journal of Environmental Management, 355, 120465. https://doi.org/10.1016/j.jenvman.2024.120465

Castro, J., Uribe, L. & Fuentes-Schweizer, P. (2024). Electroactive microorganisms in coffee processing wastewater (iron redox processes). UNED Research Journal, 16(1), e4806. https://doi.org/10.22458/urj.v16i1.4806

Cristancho, D., Gámez, W., Guerra, J. & Dueñas, M. (2019). Estimación de los gases efecto invernadero generados por las plantas de tratamiento de aguas residuales ubicadas en la cuenca del río Bogotá. Revista Ingenierías Universidad de Medellín, 18(34), 25-44. https://doi.org/10.22395/rium.v18n34a2

Daud, S., Wan, W., Kim, B., Somalu, M., Bakar, M., Muchtar, A., Jahim, J., Lim, S., & Chang, I. (2018). Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochimica Acta, 259, 365-376. https://doi.org/10.1016/j.electacta.2017.10.118

Dessie, Y., Tadesse, S., & Adimasu, Y. (2022). Improving the performance of graphite anode in a Microbial Fuel Cell via PANI encapsulated α-MnO2 composite modification for efficient power generation and methyl red removal. Chemical Engineering Journal Advances, 10, 100283. https://doi.org/10.1016/j.ceja.2022.100283

Dhara, F. & Fayshal, A. (2024). Waste Sludge: Entirely Waste or a Sustainable Source of Biocrude? A Review. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04846-7

Du, R., Ando, K., Liu, R., Deng, L., Wang, W., & Li, Y-Y. (2025). CO2 removal from biogas improved stable treatment of low-alkalinity municipal wastewater using anaerobic membrane bioreactor. Bioresource Technology, 416. https://doi.org/10.1016/j.biortech.2024.131821

El-naggar, A., Alsulaymani, L., Bakr, M., Alsaleh, A., Kamal, A., Albassam, A., Aldhafiri, A., & Lakshminarayana, G. (2024). Influence of nature melanin on the structural, linear/nonlinear optical properties and electrical conduction mechanism of PVA/CMC/PPy blended polymers for optoelectronic applications. Results in Physics, 64, 107924. https://doi.org/10.1016/j.rinp.2024.107924

Feng, Y., Wang, X., Logan, B., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol, 78(5), 873–880. https://doi.org/10.1007/s00253-008-1360-2

Gama, M., Dantas, A., Sanches, A. & Alvas, F. (2024). Evaluating centrifuged water treatment plant sludge as an adsorbent for nutrients, microorganisms, and heavy metals removal from wastewater. Journal of Cleaner Production, 468. https://doi.org/10.1016/j.jclepro.2024.142975

Gao, Y., Pan, Z., Sun, J., Liu, Z., & Wang, J. (2022). High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Lett, 14(94). https://doi.org/10.1007/s40820-022-00844-2

Geng, Y-K., Yuan, L., Liu, T., Li, Z-H., Zheng, X., & Sheng, G-P. (2021). In-situ alkaline pretreatment of waste activated sludge in microbial fuel cell enhanced power production. Journal of Power Sources, 491, 229616. https://doi.org/10.1016/j.jpowsour.2021.229616

Gholami-Kermanshahi, M., Lee, M-C., Lange, G. & Chang, S-H. (2024). Effects of N₂ plasma modification on the surface properties and electrochemical performance of Ni foam electrodes for double-chamber microbial fuel cells. Materials Advances, 5, 5554–5560. https://doi.org/10.1039/d4ma00153b

Gomes, I. S. & Caminha, I. O. (2014). Guia para estudos de revisão sistemática: uma opção metodológica para as Ciências do Movimento Humano. Movimento, 20(1), 395-411. https://doi.org/10.22456/1982-8918.41542

González-Jiménez, Y., & Villalobos-Morales, J. (2021). Manejo ambiental de residuos orgánicos: Estado del arte de la generación de compostaje a partir de residuos sólidos provenientes de sistemas de trampas de grasa y aceite. Revista Tecnología En Marcha, 34(2), 11–22. https://doi.org/10.18845/tm.v34i2.4843

Gu, W., Wang, Y., Hu, X., & Deng, F. (2024). MFC-residual sludge coupled treatment for simulated chromium(VI) wastewater: Electricity production performance and microbial communities. Journal of Water Process Engineering, 67, 106097. https://doi.org/10.1016/j.jwpe.2024.106097

Gutiérrez-González, L., Ojeda-Barrios, D., Ávila-Quezada, G., & Hernández-Rodríguez, A. (2024). Características cambiantes durante el compostaje y valores indicativos de calidad en el producto final. Chilean Journal of Agricultural & Animal Sciences, 40(2), 467-484. https://revistas.udec.cl/index.php/chjaas/article/view/12336

Henze, M., van Loosdrecht, M. C. M., & Ekama, G. A. (Eds.). (2008). Biological Wastewater Treatment. IWA Publishing. https://doi.org/10.2166/9781780401867

Hossain, R., Khalekuzzaman, M., Kabir, S., Islam, B. & Bari, H. (2022). Enhancing fecal sludge derived biocrude quality and productivity using peat biomass through co-hydrothermal liquefaction. Journal of Cleaner Production, 355. https://doi.org/10.1016/j.jclepro.2022.130371

Ismail, Z. & Jaeel, A. (2015). Performance of continuous flowing membrane-less microbial fuel cell with a new application of acrylic beads separator. Desalination and Water Treatment, 54(2), 412-421. https://doi.org/10.1080/19443994.2014.885396

Jalili, P., Ala, A., Nazari, P., Jalili, B., & Ganji, D. (2024). A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon, 10(3), e25439. https://doi.org/10.1016/j.heliyon.2024.e25439

Jouraiphy, A., Amir, S., El Gharous, M., Revel, J-C., & Hafidi, M. (2005). Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation, 56(2), 101-108. https://doi.org/10.1016/j.ibiod.2005.06.002

Khalid, O., Gidstedt, S., Lipnizki, F., & Rudolph-Schöpping, G. (2024). Direct Membrane Filtration (DMF) of municipal wastewater – A study on the prevention and remediation of fouling. Journal of Water Process Engineering, 67. https://doi.org/10.1016/j.jwpe.2024.106235

Kong, L., Liu, J., Han, Q., Zhou, Q., & He, J. (2019). Integrating metabolomics and physiological analysis to investigate the toxicological mechanisms of sewage sludge-derived biochars to wheat. Ecotoxicology and Environmental Safety, 185. https://doi.org/10.1016/j.ecoenv.2019.109664

Kumar, R., Singh, L., & Zularisam, A. (2017). Microbial Fuel Cells: Types and Applications. Waste Biomass Management – A Holistic Approach, 367-384. https://doi.org/10.1007/978-3-319-49595-8_16

Kumar, S., Kumar, V., Malyan, S., Mathimani, T., Maskarenj, M., Ghosh, P. & Pugazhendhi, A. (2019). Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel, 254. https://doi.org/10.1016/j.fuel.2019.05.109

Lema, P., Remache, M., Saltos, E., & García, J. (2023). Eficiencia de las baterías convencionales en comparación con las baterías de flujo y el impacto ambiental en el Ecuador. Revista De Investigación Talentos, 10(2), 16-28. https://doi.org/10.33789/talentos.10.2.187

Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 141, 1-8. https://doi.org/10.1016/j.watres.2018.04.066

Liu, X.-W., Huang, Y.-X., Sun, X.-F., Sheng, G.-P., Zhao, F., Wang, S.-G. & Yu, H.-Q. (2014). Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Applied Materials & Interfaces, 6(11), 8158–8164. https://doi.org/10.1021/am500624k

Logan, B. E. (2008). Microbial Fuel Cells. Wiley.

Mitraka, G-C., Kontogiannopoulos, K., Batsioula, M., Banias, G., Zouboulis, A., & Kougias, P. (2022). A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies, 15(18), 6536. https://doi.org/10.3390/en15186536

Mongioví, C., Morin, N., Lacalamita, D., & Crini, G. (2024). Impact of carbon technology on chemical and biochemical oxygen demand values as water quality indicators of physico-chemical treated laundry effluents. Case Studies in Chemical and Environmental Engineering, 10, 101012. https://doi.org/10.1016/j.cscee.2024.101012

Moretti, A., Lynn, H., & Skvaril, J. (2024). A review of the state-of-the-art wastewater quality characterization and measurement technologies. Is the shift to real-time monitoring nowadays feasible? Journal of Water Process Engineering, 60. https://doi.org/10.1016/j.jwpe.2024.105061

Muñóz-Cupa, C., Hu, Y., Xu, C., & Bassi, A. (2021). An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Science of The Total Environment, 754, 142429. https://doi.org/10.1016/j.scitotenv.2020.142429

Naha, A., Debroy, R., Sharma, D., Shah, M., & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050. https://doi.org/10.1016/j.clcb.2023.100050

Nakayama, G., Dantas, M., & Alves, F. (2025). Beneficial use of sludge from water treatment plants as a multiple resource: Potential and limitations. Resources, Conservation & Recycling Advances, 25. https://doi.org/10.1016/j.rcradv.2025.200247

Nawaz, A., Haq, I., Qaisar, K., Gunes, B., Raja, S., Mohyuddin, K., & Amin, H. (2022). Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Process Safety and Environmental Protection, 161, 357-373. https://doi.org/10.1016/j.psep.2022.03.039

Neumann, P., Pesante, S., Venegas, M., & Vidal, G. (2016). Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Biotechnol, 15, 173–211. https://doi.org/10.1007/s11157-016-9396-8

Nyein, N. & Iwai, C. B. (2025). Using Azolla microphylla in investigating different agro-wastewaters treatment and its biomass growth for carbon sequestration. Results in Engineering, 25. https://doi.org/10.1016/j.rineng.2024.103865

Oh, S-E., Yoon, J., Gurung, A., & Kim, D-J. (2014). Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresource Technology, 165, 21-26. https://doi.org/10.1016/j.biortech.2014.03.018

Ojha, R., & Pradhan, D. (2025). The potential of microbial fuel cell for converting waste to energy: An overview. Sustainable Chemistry for the Environment, 9, 100196. https://doi.org/10.1016/j.scenv.2024.100196

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2012). Norma ambiental sobre control de descargas a aguas superficiales, alcantarillado sanitario y aguas costeras. https://faolex.fao.org/docs/pdf/dom218334.pdf

Organización Mundial de la Salud (OMS). (2006). A compendium of standards for wastewater reuse in the Eastern Mediterranean Region. IRIS Home. https://iris.who.int/handle/10665/116515

Organización Mundial de la Salud (OMS). (2023). Agua para consumo humano. https://www.who.int/news-room/fact-sheets/detail/drinking-water

Paredes, C., Roig, A., Bernal, M., Sánchez-Monedero, M., & Cegarra, J. (2000). Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fertil Soils, 32, 222–227. https://doi.org/10.1007/s003740000239

Pedra, F., Polo, A., Ribeiro, A., & Domingues, H. (2007). Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biology and Biochemistry, 39(6), 1375-1382. https://doi.org/10.1016/j.soilbio.2006.12.014

Peer, S., Vybornova, A., Saracevic, Z., Krampe, J. & Zoboli, O. (2025). Source-tracing of industrial and municipal wastewater effluent in river water via fluorescence fingerprinting. Science of the Total Environment, 959, 178187. https://doi.org/10.1016/j.scitotenv.2024.178187

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/handle/1/15824

Programa de Naciones Unidas para los Asentamientos Humanos (ONU-Hábitat) y Organización Mundial de la Salud (OMS). (2021). Progress on wastewater treatment – Global status and acceleration needs for SDG indicator 6.3.1. https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress_on_wastewater_treatment_2021_english_pages.pdf

Rashid, N., Cui, Y-F., Rehman, M., & Han, J-I. (2013). Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Science of The Total Environment, 456–457, 91-94. https://doi.org/10.1016/j.scitotenv.2013.03.067

Ren, L., Ahn, Y., & Logan, B. (2014). A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment. Environmental Science & Technology, 48(7), 3601-4216. https://doi.org/10.1021/es500737m

Réveillé, V., Mansuy, L., Jardé, E., & Garnier-Sillam, E. (2003). Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Organic Geochemistry, 34(4), 615-627. https://doi.org/10.1016/S0146-6380(02)00216-4

Rodrigo, M., Cañizares, P., Lobato, J., Paz, R., Sáez, C., & Linares, J. (2007). Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 169(1), 198-204. https://doi.org/10.1016/j.jpowsour.2007.01.054

Roy, H., Ur Rahman, T., Tasnim, N., Arju, J., Rafid, M., Islam, R., Pervez, N., Cai, Y., Naddeo, V. & Islam, S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membranes13050490

Samsudeen, N., Radhakrishnan, T., & Matheswaran, M. (2014). Performance comparison of triple and dual chamber microbial fuel cell using distillery wastewater as a substrate. Environmental Progress & Sustainable Energy, 34(2), 589-594. https://doi.org/10.1002/ep.12005

Sciarria, T., Tenca, A., D’Epifanio, A., Mecheri, B., Merlino, G., Barbato, M., Borin, S., Licoccia, S., Garavaglia, V., & Adani, F. (2013). Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresource Technology, 147, 246-253. https://doi.org/10.1016/j.biortech.2013.08.033

Serrano-Blanco, S., Zan, R., Harvey, A., & Velasquez-Orta, S. (2024). Intensified microalgae production and development of microbial communities on suspended carriers and municipal wastewater. Journal of Environmental Management, 370. https://doi.org/10.1016/j.jenvman.2024.122717

Shirkosh, M., Hojjat, Y., & Mardanpour, M. (2022). Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Scientific Reports, 12, 7417. https://doi.org/10.1038/s41598-022-11472-6

Shu, D., He, Y., Yue, H., & Wang, Q. (2015). Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresource Technology, 186, 163-172. https://doi.org/10.1016/j.biortech.2015.03.072

Smernik, R., Oliver, I., & Merrington, G. (2003). Characterization of Sewage Sludge Organic Matter Using Solid-State Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Journal of Environment Quality, 32(4), 1516-1522. https://doi.org/10.2134/jeq2003.1516

Su, X., Tian, Y., Sun, Z., Lu, Y., & Li, Z. (2013). Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling. Biosensors and Bioelectronics, 49, 92-98. https://doi.org/10.1016/j.bios.2013.04.005

Suthar, S. (2010). Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: Comparison with small-scale vermireactors. Ecological Engineering, 36(5), 703-712. https://doi.org/10.1016/j.ecoleng.2009.12.016

Tang, X., Cui, Y., & Liu, L. (2021). Pyrolyzing pyrite and microalgae for enhanced anode performance in microbial fuel cells. International Journal of Hydrogen Energy, 46(75), 37460-37468. https://doi.org/10.1016/j.ijhydene.2021.09.054

Tanikkul, P., & Pisutpaisal, N. (2015). Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater. Energy Procedia, 79, 646-650. https://doi.org/10.1016/j.egypro.2015.11.548

Taslim, T., Iriany, I., Alexander, V., Nova, S., & Burmana, A. (2024). Inlet diverters and oil collectors in distillation columns for reducing COD and BOD5 in biodiesel plants. Case Studies in Chemical and Environmental Engineering, 10, 100908. https://doi.org/10.1016/j.cscee.2024.100908

Thakur, H., Ira, R., Verma, N., Sharma, V., Kumar, S., Dhar, A., Prakash, T., & Powar, S. (2023). Anaerobic co-digestion of food waste, bio-flocculated sewage sludge, and cow dung in CSTR using E(C2)Tx synthetic consortia. Environmental Technology & Innovation, 32, 103263. https://doi.org/10.1016/j.eti.2023.103263

Thakur, S., Calay, R., Mustafa, M., Eregno, F., & Patil, R. (2025). Importance of substrate type and its constituents on overall performance of microbial fuel cells. Current Research in Biotechnology, 9, 100272. https://doi.org/10.1016/j.crbiot.2025.100272

Torres, G., Condori, A., Fernandez, J. & Pampa, N. (2020). Efecto de la resistencia externa y área superficial del electrodo de grafito en la biodegradación de la materia orgánica y generación de bioelectricidad en celdas de combustible microbiano. Tecnología y Ciencias del Agua, 11(6), 1-38. https://revistatyca.org.mx/index.php/tyca/article/view/2109

Torres, K., Macea, M., Rojas, L., Rodriguez, Y., Romero, L., Cahuana, A., & Martínez, M. (2022). Eficiencia del carbón Guajiro y Quitosano en la remoción de parámetros fisicoquímicos en aguas residuales domésticas. Revista Politécnica, 18(36), 162–186. https://doi.org/10.33571/rpolitec.v18n36a12

Utami, T., Arbianti, R., Hidayatullah, I., Yusupandi, F., Hamdan, M., Putri, N., Riyadi, F., & Boopathy, R. (2024). Paracetamol degradation in a dual-chamber rectangular membrane bioreactor using microbial fuel cell system with a microbial consortium from sewage sludge. Case Studies in Chemical and Environmental Engineering, 9, 100551. https://doi.org/10.1016/j.cscee.2023.100551

Valdrez, I., Almeida, M., & Dias, J. (2022). Direct recovery of Zn from wasted alkaline batteries through selective anode's separation. Journal of Environmental Management, 321, 115979. https://doi.org/10.1016/j.jenvman.2022.115979

Vidhyeswari, D., Surendhar, A., & Bhuvaneshwari, S. (2022). Enhanced performance of novel carbon nanotubes - sulfonated poly ether ether ketone (speek) composite proton exchange membrane in mfc application. Chemosphere, 293, 133560. https://doi.org/10.1016/j.chemosphere.2022.133560

Vobruba, T., Hartl, M., Langergraber, G., Pucher, B., Gattringer, H., Bertino, G., Panzenböck, F. & Kisser, J. (2025). Vertical green wall system demonstration for domestic wastewater treatment and on-site reuse in an Austrian eco-village. Ecological Engineering, 211, 107460. https://doi.org/10.1016/j.ecoleng.2024.107460

Wang, C., Shen, J., Chen, Q., Ma, D., Zhang, G., Cui, C., Xin, Y., Zhao, Y., & Hu, C. (2020). The inhibiting effect of oxygen diffusion on the electricity generation of three-chamber microbial fuel cells. Journal of Power Sources, 453, 227889. https://doi.org/10.1016/j.jpowsour.2020.227889

Yang, W., Wang, X., Santoro, R., Chen, Y. & Chen, H. (2020). Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chemical Engineering Journal, 380, 122522. https://doi.org/10.1016/j.cej.2019.122522

Yang, Z., Chen, F., Xu, L., Jin, Y., Xu, S., Wang, J., Shen, X., Zhang, L., & Song, Y. (2021). Bioelectrochemical process for simultaneous removal of copper, ammonium and organic matter using an algae-assisted triple-chamber microbial fuel cell. Science of The Total Environment, 798, 149327. https://doi.org/10.1016/j.scitotenv.2021.149327

Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L., & Nie, C. (2018). Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 332, 277-285. https://doi.org/10.1016/j.cej.2017.09.096

Yoo, K., Song, Y.-C. & Lee, S.-K. (2011). Características y operación continua de una celda de combustible microbiana con cátodo de aire flotante (FA-MFC) para el tratamiento de aguas residuales y generación de electricidad. Environmental Engineering Research, 15(2), 245–249. https://doi.org/10.1007/s12205-011-1160-6

Zheng, X., Chen, Y., Wang, X. & Wu, J. (2017). Using mixed sludge-derived short-chain fatty acids enhances power generation of microbial fuel cells. Energy Procedia, 105, 1282–1288. https://doi.org/10.1016/j.egypro.2017.03.458

Zoghlami, R., Hamdi, H., Mokni-Tlili, S., Hechmi, S., Khelil, M., Aissa, N., Moussa, M., Bousnina, H., Benzarti, S., & Jedidi, N. (2020). Monitoring the variation of soil quality with sewage sludge application rates in absence of rhizosphere effect. International Soil and Water Conservation Research, 8(3), 245-252. https://doi.org/10.1016/j.iswcr.2020.07.007

Published

08/04/2025

How to Cite

PANTUSIN, A.; PATIÑO, M.; BANCHÓN, C. Bioenergy production from residual sludge in microbial fuel cells. Research, Society and Development, [S. l.], v. 14, n. 4, p. e2114448596, 2025. DOI: 10.33448/rsd-v14i4.48596. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48596. Acesso em: 20 may. 2025.

Issue

Section

Engineerings