Bioenergy production from residual sludge in microbial fuel cells
DOI:
https://doi.org/10.33448/rsd-v14i4.48596Keywords:
Bioenergy; Bioelectricity; Voltage; Oxidation ponds; Environmental management.Abstract
Inadequate sludge management in oxidation ponds leads to the accumulation of organic matter and pollutants, posing an environmental challenge. Microbial fuel cells (MFCs) offer an innovative solution for bioenergy production and wastewater treatment. This systematic review aims to evaluate the effect of bioenergy production from residual sludge using MFCs through a descriptive analysis of existing scientific literature. The results indicate that single-chamber MFCs achieve up to 2400 mW/m², surpassing double- and triple-chamber systems due to lower internal resistance. Alkaline pretreatment and sludge fermentation increase voltage up to 0.89 V with modified graphite electrodes. A C/N ratio and electrical conductivity above 1700 µS/cm enhance stability and energy efficiency, especially in sludge rich in organic matter. These findings demonstrate that MFCs are a sustainable alternative for residual sludge management, reducing environmental impact and optimizing energy efficiency in wastewater treatment.
References
Abbass, R., Amooey, A. & AlJaberi, F. (2024). Electrocoagulation removal of COD and TDS from real municipal wastewater sourced from the Euphrates River using multipole arrangement. Results in Chemistry, 9. https://doi.org/10.1016/j.rechem.2024.101613
Achkir, A., Aouragh, A., El Mahi, M., Lofti, E., Labjar, N., El Bouch, M., Ouahidi, M., Badza, T., Farhane, H., & El Moussaoui, T. (2023). Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerging Contaminants, 9(1). https://doi.org/10.1016/j.emcon.2022.100200
Ahmed, J. & Kim, S. (2024). Polyaniline nanofiber: an excellent anode material for microbial fuel cells. RSC Advances, 14, 34498–34503. https://doi.org/10.1039/D4RA03774J
Ahmed, S., Rozaik, E., & Abdel-Halim, H. (2016). Performance of Single-Chamber Microbial Fuel Cells Using Different Carbohydrate-Rich Wastewaters and Different Inocula. Polish Journal of Environmental Studies, 25(2), 503-510. https://doi.org/10.15244/pjoes/61115
Ali, A. E.-H., Gomaa, O. M., Fathey, R., Abd El Kareem, H. & Abou Zaid, M. M. (2015). Optimización de una celda de combustible microbiana de doble cámara para el tratamiento de aguas residuales domésticas y la producción de electricidad. Journal of Fuel Chemistry and Technology, 43(9), 1092–1099. https://doi.org/10.1016/S1872-5813(15)30032-3
Álvarez, L., García, R., Ulloa, R., Arellano, M. & González, A. (2019). Potencial biotecnológico para la valorización de residuos generados en granjas porcinas y cultivos de trigo. Entreciencias: diálogos en la sociedad del conocimiento, 7(21), 1-21. https://doi.org/10.22201/enesl.20078064e.2019.21.70799
Argota, G. & Iannacone, J. (2020). Sistema de tratamiento mineral pasivo ante el costo ambiental sostenible estimado en la laguna de oxidación Angostura Limón, Ica, Perú. Biotiempo, 17(1), 79-90. https://doi.org/10.31381/biotempo.v17i1.2998
Ayol, A., Biryol, I., Taşkan, E., & Hasar, H. (2021). Enhanced sludge stabilization coupled with microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 46(57), 29529-29540. https://doi.org/10.1016/j.ijhydene.2020.10.143
Azarmanesh, R., Zarghami, M., Hasani, M., Ghiasinejad, H., & Zhang, Y. (2023). Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14, 100453. https://doi.org/10.1016/j.ceja.2023.100453
Badza, T., Tesfamariam, E., & Cogger, C. (2020). Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on South Africa survey. Science of The Total Environment, 721, 137658. https://doi.org/10.1016/j.scitotenv.2020.137658
Banchón, C., Peralta, C., Borodulina, T., Aguirre-Munizaga, M. & Vera-Lucio, N. (2019). On-Line Monitoring of Bioelectricity from a Microbial Fuel Cell Using Fishery-Industry Wastewater. ICT for Agriculture and Environment. CITAMA2019. Advances in Intelligent Systems and Computing, 41–48.
Bazrgar, M., & Mousavi, S. (2016). Effect of casting solvent on the characteristics of Nafion/TiO2 nanocomposite membranes for microbial fuel cell application. International Journal of Hydrogen Energy, 41(1), 476-482. https://doi.org/10.1016/j.ijhydene.2015.11.036
Bélafi, K., Vajda, B. & Nemestóthy, N. (2011). Study on operation of a microbial fuel cell using mesophilic anaerobic sludge. Desalination and Water Treatment, 35(3), 222–226. https://doi.org/10.5004/dwt.2011.2415
Bergel, A., Féron, D., & Mollica, A. (2005). Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communications, 7(9), 900-904. https://doi.org/10.1016/j.elecom.2005.06.006
Bhaduri, S., & Behera, M. (2024). From single-chamber to multi-anodic microbial fuel cells: A review. Journal of Environmental Management, 355, 120465. https://doi.org/10.1016/j.jenvman.2024.120465
Castro, J., Uribe, L. & Fuentes-Schweizer, P. (2024). Electroactive microorganisms in coffee processing wastewater (iron redox processes). UNED Research Journal, 16(1), e4806. https://doi.org/10.22458/urj.v16i1.4806
Cristancho, D., Gámez, W., Guerra, J. & Dueñas, M. (2019). Estimación de los gases efecto invernadero generados por las plantas de tratamiento de aguas residuales ubicadas en la cuenca del río Bogotá. Revista Ingenierías Universidad de Medellín, 18(34), 25-44. https://doi.org/10.22395/rium.v18n34a2
Daud, S., Wan, W., Kim, B., Somalu, M., Bakar, M., Muchtar, A., Jahim, J., Lim, S., & Chang, I. (2018). Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochimica Acta, 259, 365-376. https://doi.org/10.1016/j.electacta.2017.10.118
Dessie, Y., Tadesse, S., & Adimasu, Y. (2022). Improving the performance of graphite anode in a Microbial Fuel Cell via PANI encapsulated α-MnO2 composite modification for efficient power generation and methyl red removal. Chemical Engineering Journal Advances, 10, 100283. https://doi.org/10.1016/j.ceja.2022.100283
Dhara, F. & Fayshal, A. (2024). Waste Sludge: Entirely Waste or a Sustainable Source of Biocrude? A Review. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04846-7
Du, R., Ando, K., Liu, R., Deng, L., Wang, W., & Li, Y-Y. (2025). CO2 removal from biogas improved stable treatment of low-alkalinity municipal wastewater using anaerobic membrane bioreactor. Bioresource Technology, 416. https://doi.org/10.1016/j.biortech.2024.131821
El-naggar, A., Alsulaymani, L., Bakr, M., Alsaleh, A., Kamal, A., Albassam, A., Aldhafiri, A., & Lakshminarayana, G. (2024). Influence of nature melanin on the structural, linear/nonlinear optical properties and electrical conduction mechanism of PVA/CMC/PPy blended polymers for optoelectronic applications. Results in Physics, 64, 107924. https://doi.org/10.1016/j.rinp.2024.107924
Feng, Y., Wang, X., Logan, B., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol, 78(5), 873–880. https://doi.org/10.1007/s00253-008-1360-2
Gama, M., Dantas, A., Sanches, A. & Alvas, F. (2024). Evaluating centrifuged water treatment plant sludge as an adsorbent for nutrients, microorganisms, and heavy metals removal from wastewater. Journal of Cleaner Production, 468. https://doi.org/10.1016/j.jclepro.2024.142975
Gao, Y., Pan, Z., Sun, J., Liu, Z., & Wang, J. (2022). High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Lett, 14(94). https://doi.org/10.1007/s40820-022-00844-2
Geng, Y-K., Yuan, L., Liu, T., Li, Z-H., Zheng, X., & Sheng, G-P. (2021). In-situ alkaline pretreatment of waste activated sludge in microbial fuel cell enhanced power production. Journal of Power Sources, 491, 229616. https://doi.org/10.1016/j.jpowsour.2021.229616
Gholami-Kermanshahi, M., Lee, M-C., Lange, G. & Chang, S-H. (2024). Effects of N₂ plasma modification on the surface properties and electrochemical performance of Ni foam electrodes for double-chamber microbial fuel cells. Materials Advances, 5, 5554–5560. https://doi.org/10.1039/d4ma00153b
Gomes, I. S. & Caminha, I. O. (2014). Guia para estudos de revisão sistemática: uma opção metodológica para as Ciências do Movimento Humano. Movimento, 20(1), 395-411. https://doi.org/10.22456/1982-8918.41542
González-Jiménez, Y., & Villalobos-Morales, J. (2021). Manejo ambiental de residuos orgánicos: Estado del arte de la generación de compostaje a partir de residuos sólidos provenientes de sistemas de trampas de grasa y aceite. Revista Tecnología En Marcha, 34(2), 11–22. https://doi.org/10.18845/tm.v34i2.4843
Gu, W., Wang, Y., Hu, X., & Deng, F. (2024). MFC-residual sludge coupled treatment for simulated chromium(VI) wastewater: Electricity production performance and microbial communities. Journal of Water Process Engineering, 67, 106097. https://doi.org/10.1016/j.jwpe.2024.106097
Gutiérrez-González, L., Ojeda-Barrios, D., Ávila-Quezada, G., & Hernández-Rodríguez, A. (2024). Características cambiantes durante el compostaje y valores indicativos de calidad en el producto final. Chilean Journal of Agricultural & Animal Sciences, 40(2), 467-484. https://revistas.udec.cl/index.php/chjaas/article/view/12336
Henze, M., van Loosdrecht, M. C. M., & Ekama, G. A. (Eds.). (2008). Biological Wastewater Treatment. IWA Publishing. https://doi.org/10.2166/9781780401867
Hossain, R., Khalekuzzaman, M., Kabir, S., Islam, B. & Bari, H. (2022). Enhancing fecal sludge derived biocrude quality and productivity using peat biomass through co-hydrothermal liquefaction. Journal of Cleaner Production, 355. https://doi.org/10.1016/j.jclepro.2022.130371
Ismail, Z. & Jaeel, A. (2015). Performance of continuous flowing membrane-less microbial fuel cell with a new application of acrylic beads separator. Desalination and Water Treatment, 54(2), 412-421. https://doi.org/10.1080/19443994.2014.885396
Jalili, P., Ala, A., Nazari, P., Jalili, B., & Ganji, D. (2024). A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon, 10(3), e25439. https://doi.org/10.1016/j.heliyon.2024.e25439
Jouraiphy, A., Amir, S., El Gharous, M., Revel, J-C., & Hafidi, M. (2005). Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation, 56(2), 101-108. https://doi.org/10.1016/j.ibiod.2005.06.002
Khalid, O., Gidstedt, S., Lipnizki, F., & Rudolph-Schöpping, G. (2024). Direct Membrane Filtration (DMF) of municipal wastewater – A study on the prevention and remediation of fouling. Journal of Water Process Engineering, 67. https://doi.org/10.1016/j.jwpe.2024.106235
Kong, L., Liu, J., Han, Q., Zhou, Q., & He, J. (2019). Integrating metabolomics and physiological analysis to investigate the toxicological mechanisms of sewage sludge-derived biochars to wheat. Ecotoxicology and Environmental Safety, 185. https://doi.org/10.1016/j.ecoenv.2019.109664
Kumar, R., Singh, L., & Zularisam, A. (2017). Microbial Fuel Cells: Types and Applications. Waste Biomass Management – A Holistic Approach, 367-384. https://doi.org/10.1007/978-3-319-49595-8_16
Kumar, S., Kumar, V., Malyan, S., Mathimani, T., Maskarenj, M., Ghosh, P. & Pugazhendhi, A. (2019). Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel, 254. https://doi.org/10.1016/j.fuel.2019.05.109
Lema, P., Remache, M., Saltos, E., & García, J. (2023). Eficiencia de las baterías convencionales en comparación con las baterías de flujo y el impacto ambiental en el Ecuador. Revista De Investigación Talentos, 10(2), 16-28. https://doi.org/10.33789/talentos.10.2.187
Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 141, 1-8. https://doi.org/10.1016/j.watres.2018.04.066
Liu, X.-W., Huang, Y.-X., Sun, X.-F., Sheng, G.-P., Zhao, F., Wang, S.-G. & Yu, H.-Q. (2014). Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Applied Materials & Interfaces, 6(11), 8158–8164. https://doi.org/10.1021/am500624k
Logan, B. E. (2008). Microbial Fuel Cells. Wiley.
Mitraka, G-C., Kontogiannopoulos, K., Batsioula, M., Banias, G., Zouboulis, A., & Kougias, P. (2022). A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies, 15(18), 6536. https://doi.org/10.3390/en15186536
Mongioví, C., Morin, N., Lacalamita, D., & Crini, G. (2024). Impact of carbon technology on chemical and biochemical oxygen demand values as water quality indicators of physico-chemical treated laundry effluents. Case Studies in Chemical and Environmental Engineering, 10, 101012. https://doi.org/10.1016/j.cscee.2024.101012
Moretti, A., Lynn, H., & Skvaril, J. (2024). A review of the state-of-the-art wastewater quality characterization and measurement technologies. Is the shift to real-time monitoring nowadays feasible? Journal of Water Process Engineering, 60. https://doi.org/10.1016/j.jwpe.2024.105061
Muñóz-Cupa, C., Hu, Y., Xu, C., & Bassi, A. (2021). An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Science of The Total Environment, 754, 142429. https://doi.org/10.1016/j.scitotenv.2020.142429
Naha, A., Debroy, R., Sharma, D., Shah, M., & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050. https://doi.org/10.1016/j.clcb.2023.100050
Nakayama, G., Dantas, M., & Alves, F. (2025). Beneficial use of sludge from water treatment plants as a multiple resource: Potential and limitations. Resources, Conservation & Recycling Advances, 25. https://doi.org/10.1016/j.rcradv.2025.200247
Nawaz, A., Haq, I., Qaisar, K., Gunes, B., Raja, S., Mohyuddin, K., & Amin, H. (2022). Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Process Safety and Environmental Protection, 161, 357-373. https://doi.org/10.1016/j.psep.2022.03.039
Neumann, P., Pesante, S., Venegas, M., & Vidal, G. (2016). Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Biotechnol, 15, 173–211. https://doi.org/10.1007/s11157-016-9396-8
Nyein, N. & Iwai, C. B. (2025). Using Azolla microphylla in investigating different agro-wastewaters treatment and its biomass growth for carbon sequestration. Results in Engineering, 25. https://doi.org/10.1016/j.rineng.2024.103865
Oh, S-E., Yoon, J., Gurung, A., & Kim, D-J. (2014). Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresource Technology, 165, 21-26. https://doi.org/10.1016/j.biortech.2014.03.018
Ojha, R., & Pradhan, D. (2025). The potential of microbial fuel cell for converting waste to energy: An overview. Sustainable Chemistry for the Environment, 9, 100196. https://doi.org/10.1016/j.scenv.2024.100196
Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2012). Norma ambiental sobre control de descargas a aguas superficiales, alcantarillado sanitario y aguas costeras. https://faolex.fao.org/docs/pdf/dom218334.pdf
Organización Mundial de la Salud (OMS). (2006). A compendium of standards for wastewater reuse in the Eastern Mediterranean Region. IRIS Home. https://iris.who.int/handle/10665/116515
Organización Mundial de la Salud (OMS). (2023). Agua para consumo humano. https://www.who.int/news-room/fact-sheets/detail/drinking-water
Paredes, C., Roig, A., Bernal, M., Sánchez-Monedero, M., & Cegarra, J. (2000). Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fertil Soils, 32, 222–227. https://doi.org/10.1007/s003740000239
Pedra, F., Polo, A., Ribeiro, A., & Domingues, H. (2007). Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biology and Biochemistry, 39(6), 1375-1382. https://doi.org/10.1016/j.soilbio.2006.12.014
Peer, S., Vybornova, A., Saracevic, Z., Krampe, J. & Zoboli, O. (2025). Source-tracing of industrial and municipal wastewater effluent in river water via fluorescence fingerprinting. Science of the Total Environment, 959, 178187. https://doi.org/10.1016/j.scitotenv.2024.178187
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/handle/1/15824
Programa de Naciones Unidas para los Asentamientos Humanos (ONU-Hábitat) y Organización Mundial de la Salud (OMS). (2021). Progress on wastewater treatment – Global status and acceleration needs for SDG indicator 6.3.1. https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress_on_wastewater_treatment_2021_english_pages.pdf
Rashid, N., Cui, Y-F., Rehman, M., & Han, J-I. (2013). Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Science of The Total Environment, 456–457, 91-94. https://doi.org/10.1016/j.scitotenv.2013.03.067
Ren, L., Ahn, Y., & Logan, B. (2014). A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment. Environmental Science & Technology, 48(7), 3601-4216. https://doi.org/10.1021/es500737m
Réveillé, V., Mansuy, L., Jardé, E., & Garnier-Sillam, E. (2003). Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Organic Geochemistry, 34(4), 615-627. https://doi.org/10.1016/S0146-6380(02)00216-4
Rodrigo, M., Cañizares, P., Lobato, J., Paz, R., Sáez, C., & Linares, J. (2007). Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 169(1), 198-204. https://doi.org/10.1016/j.jpowsour.2007.01.054
Roy, H., Ur Rahman, T., Tasnim, N., Arju, J., Rafid, M., Islam, R., Pervez, N., Cai, Y., Naddeo, V. & Islam, S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membranes13050490
Samsudeen, N., Radhakrishnan, T., & Matheswaran, M. (2014). Performance comparison of triple and dual chamber microbial fuel cell using distillery wastewater as a substrate. Environmental Progress & Sustainable Energy, 34(2), 589-594. https://doi.org/10.1002/ep.12005
Sciarria, T., Tenca, A., D’Epifanio, A., Mecheri, B., Merlino, G., Barbato, M., Borin, S., Licoccia, S., Garavaglia, V., & Adani, F. (2013). Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresource Technology, 147, 246-253. https://doi.org/10.1016/j.biortech.2013.08.033
Serrano-Blanco, S., Zan, R., Harvey, A., & Velasquez-Orta, S. (2024). Intensified microalgae production and development of microbial communities on suspended carriers and municipal wastewater. Journal of Environmental Management, 370. https://doi.org/10.1016/j.jenvman.2024.122717
Shirkosh, M., Hojjat, Y., & Mardanpour, M. (2022). Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Scientific Reports, 12, 7417. https://doi.org/10.1038/s41598-022-11472-6
Shu, D., He, Y., Yue, H., & Wang, Q. (2015). Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresource Technology, 186, 163-172. https://doi.org/10.1016/j.biortech.2015.03.072
Smernik, R., Oliver, I., & Merrington, G. (2003). Characterization of Sewage Sludge Organic Matter Using Solid-State Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Journal of Environment Quality, 32(4), 1516-1522. https://doi.org/10.2134/jeq2003.1516
Su, X., Tian, Y., Sun, Z., Lu, Y., & Li, Z. (2013). Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling. Biosensors and Bioelectronics, 49, 92-98. https://doi.org/10.1016/j.bios.2013.04.005
Suthar, S. (2010). Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: Comparison with small-scale vermireactors. Ecological Engineering, 36(5), 703-712. https://doi.org/10.1016/j.ecoleng.2009.12.016
Tang, X., Cui, Y., & Liu, L. (2021). Pyrolyzing pyrite and microalgae for enhanced anode performance in microbial fuel cells. International Journal of Hydrogen Energy, 46(75), 37460-37468. https://doi.org/10.1016/j.ijhydene.2021.09.054
Tanikkul, P., & Pisutpaisal, N. (2015). Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater. Energy Procedia, 79, 646-650. https://doi.org/10.1016/j.egypro.2015.11.548
Taslim, T., Iriany, I., Alexander, V., Nova, S., & Burmana, A. (2024). Inlet diverters and oil collectors in distillation columns for reducing COD and BOD5 in biodiesel plants. Case Studies in Chemical and Environmental Engineering, 10, 100908. https://doi.org/10.1016/j.cscee.2024.100908
Thakur, H., Ira, R., Verma, N., Sharma, V., Kumar, S., Dhar, A., Prakash, T., & Powar, S. (2023). Anaerobic co-digestion of food waste, bio-flocculated sewage sludge, and cow dung in CSTR using E(C2)Tx synthetic consortia. Environmental Technology & Innovation, 32, 103263. https://doi.org/10.1016/j.eti.2023.103263
Thakur, S., Calay, R., Mustafa, M., Eregno, F., & Patil, R. (2025). Importance of substrate type and its constituents on overall performance of microbial fuel cells. Current Research in Biotechnology, 9, 100272. https://doi.org/10.1016/j.crbiot.2025.100272
Torres, G., Condori, A., Fernandez, J. & Pampa, N. (2020). Efecto de la resistencia externa y área superficial del electrodo de grafito en la biodegradación de la materia orgánica y generación de bioelectricidad en celdas de combustible microbiano. Tecnología y Ciencias del Agua, 11(6), 1-38. https://revistatyca.org.mx/index.php/tyca/article/view/2109
Torres, K., Macea, M., Rojas, L., Rodriguez, Y., Romero, L., Cahuana, A., & Martínez, M. (2022). Eficiencia del carbón Guajiro y Quitosano en la remoción de parámetros fisicoquímicos en aguas residuales domésticas. Revista Politécnica, 18(36), 162–186. https://doi.org/10.33571/rpolitec.v18n36a12
Utami, T., Arbianti, R., Hidayatullah, I., Yusupandi, F., Hamdan, M., Putri, N., Riyadi, F., & Boopathy, R. (2024). Paracetamol degradation in a dual-chamber rectangular membrane bioreactor using microbial fuel cell system with a microbial consortium from sewage sludge. Case Studies in Chemical and Environmental Engineering, 9, 100551. https://doi.org/10.1016/j.cscee.2023.100551
Valdrez, I., Almeida, M., & Dias, J. (2022). Direct recovery of Zn from wasted alkaline batteries through selective anode's separation. Journal of Environmental Management, 321, 115979. https://doi.org/10.1016/j.jenvman.2022.115979
Vidhyeswari, D., Surendhar, A., & Bhuvaneshwari, S. (2022). Enhanced performance of novel carbon nanotubes - sulfonated poly ether ether ketone (speek) composite proton exchange membrane in mfc application. Chemosphere, 293, 133560. https://doi.org/10.1016/j.chemosphere.2022.133560
Vobruba, T., Hartl, M., Langergraber, G., Pucher, B., Gattringer, H., Bertino, G., Panzenböck, F. & Kisser, J. (2025). Vertical green wall system demonstration for domestic wastewater treatment and on-site reuse in an Austrian eco-village. Ecological Engineering, 211, 107460. https://doi.org/10.1016/j.ecoleng.2024.107460
Wang, C., Shen, J., Chen, Q., Ma, D., Zhang, G., Cui, C., Xin, Y., Zhao, Y., & Hu, C. (2020). The inhibiting effect of oxygen diffusion on the electricity generation of three-chamber microbial fuel cells. Journal of Power Sources, 453, 227889. https://doi.org/10.1016/j.jpowsour.2020.227889
Yang, W., Wang, X., Santoro, R., Chen, Y. & Chen, H. (2020). Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chemical Engineering Journal, 380, 122522. https://doi.org/10.1016/j.cej.2019.122522
Yang, Z., Chen, F., Xu, L., Jin, Y., Xu, S., Wang, J., Shen, X., Zhang, L., & Song, Y. (2021). Bioelectrochemical process for simultaneous removal of copper, ammonium and organic matter using an algae-assisted triple-chamber microbial fuel cell. Science of The Total Environment, 798, 149327. https://doi.org/10.1016/j.scitotenv.2021.149327
Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L., & Nie, C. (2018). Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 332, 277-285. https://doi.org/10.1016/j.cej.2017.09.096
Yoo, K., Song, Y.-C. & Lee, S.-K. (2011). Características y operación continua de una celda de combustible microbiana con cátodo de aire flotante (FA-MFC) para el tratamiento de aguas residuales y generación de electricidad. Environmental Engineering Research, 15(2), 245–249. https://doi.org/10.1007/s12205-011-1160-6
Zheng, X., Chen, Y., Wang, X. & Wu, J. (2017). Using mixed sludge-derived short-chain fatty acids enhances power generation of microbial fuel cells. Energy Procedia, 105, 1282–1288. https://doi.org/10.1016/j.egypro.2017.03.458
Zoghlami, R., Hamdi, H., Mokni-Tlili, S., Hechmi, S., Khelil, M., Aissa, N., Moussa, M., Bousnina, H., Benzarti, S., & Jedidi, N. (2020). Monitoring the variation of soil quality with sewage sludge application rates in absence of rhizosphere effect. International Soil and Water Conservation Research, 8(3), 245-252. https://doi.org/10.1016/j.iswcr.2020.07.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrea Pantusin; Milena Patiño; Carlos Banchón

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.