Producción de bioenergía a partir de lodo residual en celdas microbianas combustibles

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i4.48596

Palabras clave:

Bioenergía; Bioelectricidad; Voltaje; Lagunas de oxidación; Gestión ambiental.

Resumen

La gestión inadecuada de lodos residuales en lagunas de oxidación genera acumulación de materia orgánica y contaminantes, planteando un reto ambiental. Las celdas microbianas de combustible (CMCs) ofrecen una solución innovadora para producir bioenergía y tratar aguas residuales. La presente revisión sistemática tiene como objetivo evaluar el efecto de la producción de bioenergía a partir de lodo residual mediante celdas microbianas combustibles, a través de un análisis descriptivo de la literatura científica existente. Los resultados indican que las CMCs de una cámara logran hasta 2400 mW/m², superando a las de doble y triple cámara debido a menor resistencia interna. El pretratamiento alcalino y la fermentación del lodo incrementan el voltaje hasta 0,89 V con electrodos de grafito modificados. La relación C/N y una conductividad eléctrica superior a 1700 µS/cm mejoran la estabilidad y eficiencia energética, especialmente en lodos ricos en materia orgánica. Estos hallazgos demuestran que las CMCs son una alternativa sostenible para gestionar lodos residuales, reduciendo el impacto ambiental y optimizando la eficiencia energética en el tratamiento de aguas residuales.

Citas

Abbass, R., Amooey, A. & AlJaberi, F. (2024). Electrocoagulation removal of COD and TDS from real municipal wastewater sourced from the Euphrates River using multipole arrangement. Results in Chemistry, 9. https://doi.org/10.1016/j.rechem.2024.101613

Achkir, A., Aouragh, A., El Mahi, M., Lofti, E., Labjar, N., El Bouch, M., Ouahidi, M., Badza, T., Farhane, H., & El Moussaoui, T. (2023). Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerging Contaminants, 9(1). https://doi.org/10.1016/j.emcon.2022.100200

Ahmed, J. & Kim, S. (2024). Polyaniline nanofiber: an excellent anode material for microbial fuel cells. RSC Advances, 14, 34498–34503. https://doi.org/10.1039/D4RA03774J

Ahmed, S., Rozaik, E., & Abdel-Halim, H. (2016). Performance of Single-Chamber Microbial Fuel Cells Using Different Carbohydrate-Rich Wastewaters and Different Inocula. Polish Journal of Environmental Studies, 25(2), 503-510. https://doi.org/10.15244/pjoes/61115

Ali, A. E.-H., Gomaa, O. M., Fathey, R., Abd El Kareem, H. & Abou Zaid, M. M. (2015). Optimización de una celda de combustible microbiana de doble cámara para el tratamiento de aguas residuales domésticas y la producción de electricidad. Journal of Fuel Chemistry and Technology, 43(9), 1092–1099. https://doi.org/10.1016/S1872-5813(15)30032-3

Álvarez, L., García, R., Ulloa, R., Arellano, M. & González, A. (2019). Potencial biotecnológico para la valorización de residuos generados en granjas porcinas y cultivos de trigo. Entreciencias: diálogos en la sociedad del conocimiento, 7(21), 1-21. https://doi.org/10.22201/enesl.20078064e.2019.21.70799

Argota, G. & Iannacone, J. (2020). Sistema de tratamiento mineral pasivo ante el costo ambiental sostenible estimado en la laguna de oxidación Angostura Limón, Ica, Perú. Biotiempo, 17(1), 79-90. https://doi.org/10.31381/biotempo.v17i1.2998

Ayol, A., Biryol, I., Taşkan, E., & Hasar, H. (2021). Enhanced sludge stabilization coupled with microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 46(57), 29529-29540. https://doi.org/10.1016/j.ijhydene.2020.10.143

Azarmanesh, R., Zarghami, M., Hasani, M., Ghiasinejad, H., & Zhang, Y. (2023). Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14, 100453. https://doi.org/10.1016/j.ceja.2023.100453

Badza, T., Tesfamariam, E., & Cogger, C. (2020). Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on South Africa survey. Science of The Total Environment, 721, 137658. https://doi.org/10.1016/j.scitotenv.2020.137658

Banchón, C., Peralta, C., Borodulina, T., Aguirre-Munizaga, M. & Vera-Lucio, N. (2019). On-Line Monitoring of Bioelectricity from a Microbial Fuel Cell Using Fishery-Industry Wastewater. ICT for Agriculture and Environment. CITAMA2019. Advances in Intelligent Systems and Computing, 41–48.

Bazrgar, M., & Mousavi, S. (2016). Effect of casting solvent on the characteristics of Nafion/TiO2 nanocomposite membranes for microbial fuel cell application. International Journal of Hydrogen Energy, 41(1), 476-482. https://doi.org/10.1016/j.ijhydene.2015.11.036

Bélafi, K., Vajda, B. & Nemestóthy, N. (2011). Study on operation of a microbial fuel cell using mesophilic anaerobic sludge. Desalination and Water Treatment, 35(3), 222–226. https://doi.org/10.5004/dwt.2011.2415

Bergel, A., Féron, D., & Mollica, A. (2005). Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communications, 7(9), 900-904. https://doi.org/10.1016/j.elecom.2005.06.006

Bhaduri, S., & Behera, M. (2024). From single-chamber to multi-anodic microbial fuel cells: A review. Journal of Environmental Management, 355, 120465. https://doi.org/10.1016/j.jenvman.2024.120465

Castro, J., Uribe, L. & Fuentes-Schweizer, P. (2024). Electroactive microorganisms in coffee processing wastewater (iron redox processes). UNED Research Journal, 16(1), e4806. https://doi.org/10.22458/urj.v16i1.4806

Cristancho, D., Gámez, W., Guerra, J. & Dueñas, M. (2019). Estimación de los gases efecto invernadero generados por las plantas de tratamiento de aguas residuales ubicadas en la cuenca del río Bogotá. Revista Ingenierías Universidad de Medellín, 18(34), 25-44. https://doi.org/10.22395/rium.v18n34a2

Daud, S., Wan, W., Kim, B., Somalu, M., Bakar, M., Muchtar, A., Jahim, J., Lim, S., & Chang, I. (2018). Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochimica Acta, 259, 365-376. https://doi.org/10.1016/j.electacta.2017.10.118

Dessie, Y., Tadesse, S., & Adimasu, Y. (2022). Improving the performance of graphite anode in a Microbial Fuel Cell via PANI encapsulated α-MnO2 composite modification for efficient power generation and methyl red removal. Chemical Engineering Journal Advances, 10, 100283. https://doi.org/10.1016/j.ceja.2022.100283

Dhara, F. & Fayshal, A. (2024). Waste Sludge: Entirely Waste or a Sustainable Source of Biocrude? A Review. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04846-7

Du, R., Ando, K., Liu, R., Deng, L., Wang, W., & Li, Y-Y. (2025). CO2 removal from biogas improved stable treatment of low-alkalinity municipal wastewater using anaerobic membrane bioreactor. Bioresource Technology, 416. https://doi.org/10.1016/j.biortech.2024.131821

El-naggar, A., Alsulaymani, L., Bakr, M., Alsaleh, A., Kamal, A., Albassam, A., Aldhafiri, A., & Lakshminarayana, G. (2024). Influence of nature melanin on the structural, linear/nonlinear optical properties and electrical conduction mechanism of PVA/CMC/PPy blended polymers for optoelectronic applications. Results in Physics, 64, 107924. https://doi.org/10.1016/j.rinp.2024.107924

Feng, Y., Wang, X., Logan, B., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol, 78(5), 873–880. https://doi.org/10.1007/s00253-008-1360-2

Gama, M., Dantas, A., Sanches, A. & Alvas, F. (2024). Evaluating centrifuged water treatment plant sludge as an adsorbent for nutrients, microorganisms, and heavy metals removal from wastewater. Journal of Cleaner Production, 468. https://doi.org/10.1016/j.jclepro.2024.142975

Gao, Y., Pan, Z., Sun, J., Liu, Z., & Wang, J. (2022). High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Lett, 14(94). https://doi.org/10.1007/s40820-022-00844-2

Geng, Y-K., Yuan, L., Liu, T., Li, Z-H., Zheng, X., & Sheng, G-P. (2021). In-situ alkaline pretreatment of waste activated sludge in microbial fuel cell enhanced power production. Journal of Power Sources, 491, 229616. https://doi.org/10.1016/j.jpowsour.2021.229616

Gholami-Kermanshahi, M., Lee, M-C., Lange, G. & Chang, S-H. (2024). Effects of N₂ plasma modification on the surface properties and electrochemical performance of Ni foam electrodes for double-chamber microbial fuel cells. Materials Advances, 5, 5554–5560. https://doi.org/10.1039/d4ma00153b

Gomes, I. S. & Caminha, I. O. (2014). Guia para estudos de revisão sistemática: uma opção metodológica para as Ciências do Movimento Humano. Movimento, 20(1), 395-411. https://doi.org/10.22456/1982-8918.41542

González-Jiménez, Y., & Villalobos-Morales, J. (2021). Manejo ambiental de residuos orgánicos: Estado del arte de la generación de compostaje a partir de residuos sólidos provenientes de sistemas de trampas de grasa y aceite. Revista Tecnología En Marcha, 34(2), 11–22. https://doi.org/10.18845/tm.v34i2.4843

Gu, W., Wang, Y., Hu, X., & Deng, F. (2024). MFC-residual sludge coupled treatment for simulated chromium(VI) wastewater: Electricity production performance and microbial communities. Journal of Water Process Engineering, 67, 106097. https://doi.org/10.1016/j.jwpe.2024.106097

Gutiérrez-González, L., Ojeda-Barrios, D., Ávila-Quezada, G., & Hernández-Rodríguez, A. (2024). Características cambiantes durante el compostaje y valores indicativos de calidad en el producto final. Chilean Journal of Agricultural & Animal Sciences, 40(2), 467-484. https://revistas.udec.cl/index.php/chjaas/article/view/12336

Henze, M., van Loosdrecht, M. C. M., & Ekama, G. A. (Eds.). (2008). Biological Wastewater Treatment. IWA Publishing. https://doi.org/10.2166/9781780401867

Hossain, R., Khalekuzzaman, M., Kabir, S., Islam, B. & Bari, H. (2022). Enhancing fecal sludge derived biocrude quality and productivity using peat biomass through co-hydrothermal liquefaction. Journal of Cleaner Production, 355. https://doi.org/10.1016/j.jclepro.2022.130371

Ismail, Z. & Jaeel, A. (2015). Performance of continuous flowing membrane-less microbial fuel cell with a new application of acrylic beads separator. Desalination and Water Treatment, 54(2), 412-421. https://doi.org/10.1080/19443994.2014.885396

Jalili, P., Ala, A., Nazari, P., Jalili, B., & Ganji, D. (2024). A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon, 10(3), e25439. https://doi.org/10.1016/j.heliyon.2024.e25439

Jouraiphy, A., Amir, S., El Gharous, M., Revel, J-C., & Hafidi, M. (2005). Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation, 56(2), 101-108. https://doi.org/10.1016/j.ibiod.2005.06.002

Khalid, O., Gidstedt, S., Lipnizki, F., & Rudolph-Schöpping, G. (2024). Direct Membrane Filtration (DMF) of municipal wastewater – A study on the prevention and remediation of fouling. Journal of Water Process Engineering, 67. https://doi.org/10.1016/j.jwpe.2024.106235

Kong, L., Liu, J., Han, Q., Zhou, Q., & He, J. (2019). Integrating metabolomics and physiological analysis to investigate the toxicological mechanisms of sewage sludge-derived biochars to wheat. Ecotoxicology and Environmental Safety, 185. https://doi.org/10.1016/j.ecoenv.2019.109664

Kumar, R., Singh, L., & Zularisam, A. (2017). Microbial Fuel Cells: Types and Applications. Waste Biomass Management – A Holistic Approach, 367-384. https://doi.org/10.1007/978-3-319-49595-8_16

Kumar, S., Kumar, V., Malyan, S., Mathimani, T., Maskarenj, M., Ghosh, P. & Pugazhendhi, A. (2019). Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel, 254. https://doi.org/10.1016/j.fuel.2019.05.109

Lema, P., Remache, M., Saltos, E., & García, J. (2023). Eficiencia de las baterías convencionales en comparación con las baterías de flujo y el impacto ambiental en el Ecuador. Revista De Investigación Talentos, 10(2), 16-28. https://doi.org/10.33789/talentos.10.2.187

Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 141, 1-8. https://doi.org/10.1016/j.watres.2018.04.066

Liu, X.-W., Huang, Y.-X., Sun, X.-F., Sheng, G.-P., Zhao, F., Wang, S.-G. & Yu, H.-Q. (2014). Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Applied Materials & Interfaces, 6(11), 8158–8164. https://doi.org/10.1021/am500624k

Logan, B. E. (2008). Microbial Fuel Cells. Wiley.

Mitraka, G-C., Kontogiannopoulos, K., Batsioula, M., Banias, G., Zouboulis, A., & Kougias, P. (2022). A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies, 15(18), 6536. https://doi.org/10.3390/en15186536

Mongioví, C., Morin, N., Lacalamita, D., & Crini, G. (2024). Impact of carbon technology on chemical and biochemical oxygen demand values as water quality indicators of physico-chemical treated laundry effluents. Case Studies in Chemical and Environmental Engineering, 10, 101012. https://doi.org/10.1016/j.cscee.2024.101012

Moretti, A., Lynn, H., & Skvaril, J. (2024). A review of the state-of-the-art wastewater quality characterization and measurement technologies. Is the shift to real-time monitoring nowadays feasible? Journal of Water Process Engineering, 60. https://doi.org/10.1016/j.jwpe.2024.105061

Muñóz-Cupa, C., Hu, Y., Xu, C., & Bassi, A. (2021). An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Science of The Total Environment, 754, 142429. https://doi.org/10.1016/j.scitotenv.2020.142429

Naha, A., Debroy, R., Sharma, D., Shah, M., & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050. https://doi.org/10.1016/j.clcb.2023.100050

Nakayama, G., Dantas, M., & Alves, F. (2025). Beneficial use of sludge from water treatment plants as a multiple resource: Potential and limitations. Resources, Conservation & Recycling Advances, 25. https://doi.org/10.1016/j.rcradv.2025.200247

Nawaz, A., Haq, I., Qaisar, K., Gunes, B., Raja, S., Mohyuddin, K., & Amin, H. (2022). Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Process Safety and Environmental Protection, 161, 357-373. https://doi.org/10.1016/j.psep.2022.03.039

Neumann, P., Pesante, S., Venegas, M., & Vidal, G. (2016). Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Biotechnol, 15, 173–211. https://doi.org/10.1007/s11157-016-9396-8

Nyein, N. & Iwai, C. B. (2025). Using Azolla microphylla in investigating different agro-wastewaters treatment and its biomass growth for carbon sequestration. Results in Engineering, 25. https://doi.org/10.1016/j.rineng.2024.103865

Oh, S-E., Yoon, J., Gurung, A., & Kim, D-J. (2014). Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresource Technology, 165, 21-26. https://doi.org/10.1016/j.biortech.2014.03.018

Ojha, R., & Pradhan, D. (2025). The potential of microbial fuel cell for converting waste to energy: An overview. Sustainable Chemistry for the Environment, 9, 100196. https://doi.org/10.1016/j.scenv.2024.100196

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2012). Norma ambiental sobre control de descargas a aguas superficiales, alcantarillado sanitario y aguas costeras. https://faolex.fao.org/docs/pdf/dom218334.pdf

Organización Mundial de la Salud (OMS). (2006). A compendium of standards for wastewater reuse in the Eastern Mediterranean Region. IRIS Home. https://iris.who.int/handle/10665/116515

Organización Mundial de la Salud (OMS). (2023). Agua para consumo humano. https://www.who.int/news-room/fact-sheets/detail/drinking-water

Paredes, C., Roig, A., Bernal, M., Sánchez-Monedero, M., & Cegarra, J. (2000). Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fertil Soils, 32, 222–227. https://doi.org/10.1007/s003740000239

Pedra, F., Polo, A., Ribeiro, A., & Domingues, H. (2007). Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biology and Biochemistry, 39(6), 1375-1382. https://doi.org/10.1016/j.soilbio.2006.12.014

Peer, S., Vybornova, A., Saracevic, Z., Krampe, J. & Zoboli, O. (2025). Source-tracing of industrial and municipal wastewater effluent in river water via fluorescence fingerprinting. Science of the Total Environment, 959, 178187. https://doi.org/10.1016/j.scitotenv.2024.178187

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/handle/1/15824

Programa de Naciones Unidas para los Asentamientos Humanos (ONU-Hábitat) y Organización Mundial de la Salud (OMS). (2021). Progress on wastewater treatment – Global status and acceleration needs for SDG indicator 6.3.1. https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress_on_wastewater_treatment_2021_english_pages.pdf

Rashid, N., Cui, Y-F., Rehman, M., & Han, J-I. (2013). Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Science of The Total Environment, 456–457, 91-94. https://doi.org/10.1016/j.scitotenv.2013.03.067

Ren, L., Ahn, Y., & Logan, B. (2014). A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment. Environmental Science & Technology, 48(7), 3601-4216. https://doi.org/10.1021/es500737m

Réveillé, V., Mansuy, L., Jardé, E., & Garnier-Sillam, E. (2003). Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Organic Geochemistry, 34(4), 615-627. https://doi.org/10.1016/S0146-6380(02)00216-4

Rodrigo, M., Cañizares, P., Lobato, J., Paz, R., Sáez, C., & Linares, J. (2007). Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 169(1), 198-204. https://doi.org/10.1016/j.jpowsour.2007.01.054

Roy, H., Ur Rahman, T., Tasnim, N., Arju, J., Rafid, M., Islam, R., Pervez, N., Cai, Y., Naddeo, V. & Islam, S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membranes13050490

Samsudeen, N., Radhakrishnan, T., & Matheswaran, M. (2014). Performance comparison of triple and dual chamber microbial fuel cell using distillery wastewater as a substrate. Environmental Progress & Sustainable Energy, 34(2), 589-594. https://doi.org/10.1002/ep.12005

Sciarria, T., Tenca, A., D’Epifanio, A., Mecheri, B., Merlino, G., Barbato, M., Borin, S., Licoccia, S., Garavaglia, V., & Adani, F. (2013). Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresource Technology, 147, 246-253. https://doi.org/10.1016/j.biortech.2013.08.033

Serrano-Blanco, S., Zan, R., Harvey, A., & Velasquez-Orta, S. (2024). Intensified microalgae production and development of microbial communities on suspended carriers and municipal wastewater. Journal of Environmental Management, 370. https://doi.org/10.1016/j.jenvman.2024.122717

Shirkosh, M., Hojjat, Y., & Mardanpour, M. (2022). Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Scientific Reports, 12, 7417. https://doi.org/10.1038/s41598-022-11472-6

Shu, D., He, Y., Yue, H., & Wang, Q. (2015). Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresource Technology, 186, 163-172. https://doi.org/10.1016/j.biortech.2015.03.072

Smernik, R., Oliver, I., & Merrington, G. (2003). Characterization of Sewage Sludge Organic Matter Using Solid-State Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Journal of Environment Quality, 32(4), 1516-1522. https://doi.org/10.2134/jeq2003.1516

Su, X., Tian, Y., Sun, Z., Lu, Y., & Li, Z. (2013). Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling. Biosensors and Bioelectronics, 49, 92-98. https://doi.org/10.1016/j.bios.2013.04.005

Suthar, S. (2010). Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: Comparison with small-scale vermireactors. Ecological Engineering, 36(5), 703-712. https://doi.org/10.1016/j.ecoleng.2009.12.016

Tang, X., Cui, Y., & Liu, L. (2021). Pyrolyzing pyrite and microalgae for enhanced anode performance in microbial fuel cells. International Journal of Hydrogen Energy, 46(75), 37460-37468. https://doi.org/10.1016/j.ijhydene.2021.09.054

Tanikkul, P., & Pisutpaisal, N. (2015). Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater. Energy Procedia, 79, 646-650. https://doi.org/10.1016/j.egypro.2015.11.548

Taslim, T., Iriany, I., Alexander, V., Nova, S., & Burmana, A. (2024). Inlet diverters and oil collectors in distillation columns for reducing COD and BOD5 in biodiesel plants. Case Studies in Chemical and Environmental Engineering, 10, 100908. https://doi.org/10.1016/j.cscee.2024.100908

Thakur, H., Ira, R., Verma, N., Sharma, V., Kumar, S., Dhar, A., Prakash, T., & Powar, S. (2023). Anaerobic co-digestion of food waste, bio-flocculated sewage sludge, and cow dung in CSTR using E(C2)Tx synthetic consortia. Environmental Technology & Innovation, 32, 103263. https://doi.org/10.1016/j.eti.2023.103263

Thakur, S., Calay, R., Mustafa, M., Eregno, F., & Patil, R. (2025). Importance of substrate type and its constituents on overall performance of microbial fuel cells. Current Research in Biotechnology, 9, 100272. https://doi.org/10.1016/j.crbiot.2025.100272

Torres, G., Condori, A., Fernandez, J. & Pampa, N. (2020). Efecto de la resistencia externa y área superficial del electrodo de grafito en la biodegradación de la materia orgánica y generación de bioelectricidad en celdas de combustible microbiano. Tecnología y Ciencias del Agua, 11(6), 1-38. https://revistatyca.org.mx/index.php/tyca/article/view/2109

Torres, K., Macea, M., Rojas, L., Rodriguez, Y., Romero, L., Cahuana, A., & Martínez, M. (2022). Eficiencia del carbón Guajiro y Quitosano en la remoción de parámetros fisicoquímicos en aguas residuales domésticas. Revista Politécnica, 18(36), 162–186. https://doi.org/10.33571/rpolitec.v18n36a12

Utami, T., Arbianti, R., Hidayatullah, I., Yusupandi, F., Hamdan, M., Putri, N., Riyadi, F., & Boopathy, R. (2024). Paracetamol degradation in a dual-chamber rectangular membrane bioreactor using microbial fuel cell system with a microbial consortium from sewage sludge. Case Studies in Chemical and Environmental Engineering, 9, 100551. https://doi.org/10.1016/j.cscee.2023.100551

Valdrez, I., Almeida, M., & Dias, J. (2022). Direct recovery of Zn from wasted alkaline batteries through selective anode's separation. Journal of Environmental Management, 321, 115979. https://doi.org/10.1016/j.jenvman.2022.115979

Vidhyeswari, D., Surendhar, A., & Bhuvaneshwari, S. (2022). Enhanced performance of novel carbon nanotubes - sulfonated poly ether ether ketone (speek) composite proton exchange membrane in mfc application. Chemosphere, 293, 133560. https://doi.org/10.1016/j.chemosphere.2022.133560

Vobruba, T., Hartl, M., Langergraber, G., Pucher, B., Gattringer, H., Bertino, G., Panzenböck, F. & Kisser, J. (2025). Vertical green wall system demonstration for domestic wastewater treatment and on-site reuse in an Austrian eco-village. Ecological Engineering, 211, 107460. https://doi.org/10.1016/j.ecoleng.2024.107460

Wang, C., Shen, J., Chen, Q., Ma, D., Zhang, G., Cui, C., Xin, Y., Zhao, Y., & Hu, C. (2020). The inhibiting effect of oxygen diffusion on the electricity generation of three-chamber microbial fuel cells. Journal of Power Sources, 453, 227889. https://doi.org/10.1016/j.jpowsour.2020.227889

Yang, W., Wang, X., Santoro, R., Chen, Y. & Chen, H. (2020). Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chemical Engineering Journal, 380, 122522. https://doi.org/10.1016/j.cej.2019.122522

Yang, Z., Chen, F., Xu, L., Jin, Y., Xu, S., Wang, J., Shen, X., Zhang, L., & Song, Y. (2021). Bioelectrochemical process for simultaneous removal of copper, ammonium and organic matter using an algae-assisted triple-chamber microbial fuel cell. Science of The Total Environment, 798, 149327. https://doi.org/10.1016/j.scitotenv.2021.149327

Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L., & Nie, C. (2018). Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 332, 277-285. https://doi.org/10.1016/j.cej.2017.09.096

Yoo, K., Song, Y.-C. & Lee, S.-K. (2011). Características y operación continua de una celda de combustible microbiana con cátodo de aire flotante (FA-MFC) para el tratamiento de aguas residuales y generación de electricidad. Environmental Engineering Research, 15(2), 245–249. https://doi.org/10.1007/s12205-011-1160-6

Zheng, X., Chen, Y., Wang, X. & Wu, J. (2017). Using mixed sludge-derived short-chain fatty acids enhances power generation of microbial fuel cells. Energy Procedia, 105, 1282–1288. https://doi.org/10.1016/j.egypro.2017.03.458

Zoghlami, R., Hamdi, H., Mokni-Tlili, S., Hechmi, S., Khelil, M., Aissa, N., Moussa, M., Bousnina, H., Benzarti, S., & Jedidi, N. (2020). Monitoring the variation of soil quality with sewage sludge application rates in absence of rhizosphere effect. International Soil and Water Conservation Research, 8(3), 245-252. https://doi.org/10.1016/j.iswcr.2020.07.007

Descargas

Publicado

08/04/2025

Cómo citar

PANTUSIN, A.; PATIÑO, M.; BANCHÓN, C. Producción de bioenergía a partir de lodo residual en celdas microbianas combustibles. Research, Society and Development, [S. l.], v. 14, n. 4, p. e2114448596, 2025. DOI: 10.33448/rsd-v14i4.48596. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48596. Acesso em: 8 jun. 2025.

Número

Sección

Ingenierías