Organic contaminants in distilled sugar cane spirits produced by column and copper alembic distillation

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4879

Keywords:

sugar cane; drinks; quality; contaminants

Abstract

The present work aimed to characterize and quantify four contaminants (ethyl carbamate, 2,3-butanedione, furfural and 5-hydroxymethylfurfural) present in still and industrial cachaça. The four contaminants ethyl carbamate, 2,3-butanedione, furfural (FU) and 5-hydroxymethylfurfural (5-HMF) were analyzed in spirits produced by alembic and column distillation. Forty-four samples of cachaça were collected in the southern, central-western, and southeastern regions of the state of Minas Gerais and in the state of São Paulo. The samples were subjected to chromatographic analysis. Ethyl carbamate, 2,3-butanedione, furfural and 5-HMF were characterized and quantified by HPLC. Two samples of spirits were found to contain concentrations of ethyl carbamate that were greater than the legal limits, ranging from 245.31 to 235.53 μg L-1. None of the alembic samples had concentrations higher than the legal limit. The spirits obtained by column disitllation contained higher concentrations of the 2,3-butanedione than the alembic liquors. An analytical method was developed and validated for the quantification of furfural and 5-HMF, and the spirits obtained by column distillation contained concentrations higher than the limit established by legislation.

References

Andrade-Sobrinho LG, Boscolo M, Lima-Beto BS & Franco DW. (2002). Carbamato de etila em bebidas alcoólicas (cachaça, tiquira, uísque e grapa). Química Nova. 25(1): 65-72.

Anjos JP, Cardoso MG, Saczk AA, Zacaroni LM, Santiago WD, Doréa HS & Machado AMR. (2011). Identification of ethyl carbamate during the aging of cachaca in an oak barrel (Quercus sp) and a glass vessel. Química Nova. 34(1): 874-8.

Apostolopoulou AA, Flouros AI, Demertzis PG & Akrida-Demertzi K. (2005). Differences in concentration of principal volatile constituents in traditional Greek distillates Food Control. 16(1): 157-164.

Aresta M, Boscolo M & Franco DW. (2001). Copper (II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions. Journal of Agricultural and Food Chemistry. 6(2): 2819-2824.

Baffa júnior J.C, Soares NFF, Pereira JM ATK & Melo NR. (2007). Ocorrência de carbamato de etila em cachaças comerciais da região da zona da Mata Mineira – MG. Alimentos e Nutrição. 4(1): 371-373.

Barcelos LVF, Cardoso MG, Vilela FJ & Anjos JP. (2007). Teores de Carbamato de etila e outros componentes secundários em diferentes cachaças produzidas em três regiões do estado de Minas Gerais: Zona da Mata, Sul de Minas e Vale do Jequitinhonha. Química Nova. 30(1): 1009-1011.

Bruno SNF. (2015). Distillation of Brazilian Sugar Cane Spirits. Revista Internacional do Conhecimento. Disponível em http://revistainternacionaldoconhecimento,wordpress,com/2012/05/02/destilao-distillation-of- brazilian-sugar-cane-spirits-cachaas-by-sergio-nicolau-freire-bruno/.

Faria JB, Loyola E, Lopes MG & Dufour JP. (2003). Cachaça, Pisco and Tequila. In: Lea, A G H; Piggott j r. (Org.). Kluwer Academic. 35(3): 335-363.

Ferreira DF. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia. 35(3): 1039-1042.

Galinaro CA & Franco DF. (2011). Formação de carbamato de etila em aguardentes recém destiladas: proposta para seu controle. Química Nova. 34(2): 996-1000.

HARRIS DC. (2008). Análise química quantitativa. 7°ed. Rio de Janeiro:

Machado AMR, Cardoso MG, Saczk AA, Anjo JP, Zacaroni LM, Doréa HS & Lee Nelson D. (2013). Determination of ethyl carbamate in cachaça produced from copper stills by HPLC. Food Chemistry. 138(1): 1233-1238.

MASSON J, Cardoso MG, Zacaroni LM, Anjo JP, Santiago WD, Machado AMR, Saczk A A & Lee Nelson D. (2014). Cg-ms analisey Analysis of ethwl carbamate in distilled sugar cane spirits from the northern and southern regions of Minas Gerais Journal of the Institute of Brewing. 120(1): 506-520.

MASSON J, Cardoso MG, Vilela FJ, Pimentel FA, Morais AR & Anjo JP. (2007). Parâmetros físico-químicos e cromatográficos em aguardentes de cana queimada e não queimada. Ciência e Agrotecnologia. 31(2): 1805-1810.

Mendonça JGP, Cardoso MG, Santiago WD, Rodrigues LMA, Lee Nelson D, Brandão R M & Silva BL. (2016). Determination of ethyl carbamat in cachaças produced by selected yeast and spontaneous fermentation. Journal of the Institute of Brewing. 122(1): 63-68.

Moreira RFA, Netto CC & Maria CAB. (2012) A fração volátil das aguardentes de cana produzidas no Brasil. Química Nova. 35(2): 1819-1826.

Nakashimada Y, Kanai K & Nishio N. (1998). Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnology Letters. 20(34): 1133-1138.

Pereira AS, Rogges ABD, Alves LGA, & Borges PVMA. (2018). Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Accessed on: July, 2nd, 2020.Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Perego P, Converti A & Borghi MD. (2003). Effects of temperature, inoculum size and starch hydrolyzate concentration on butanodiol production by Bacillus licheniformis. Bioresource Technology. 89(5): 125-131.

Pinheiro SHM, Borges ADE, Floêncio AG, Alves PV & Carvalho JMR. (2010). Avaliação sensorial das bebidas aguardente industrial de cana-de-açúcar e cachaça de alambique: uma contribuição para o desenvolvimento de um protocolo de análise. Journal of Agricultural and Food Chemistry. 22(2): 323-334.

Reche RV, Leite Neto AF, Silva A A, Galinaro CA, De Osti RZ & Franco DW. (2007). Influence of Type of Distillation Apparatus on Chemical Profiles of Brazilian Cachaças. Journal of Agricultural and Food Chemistry. 55(2): 6603-6608.

Ribani M, Bottoli CBG, Collins ICSFJ & Melo LFC. (2004). Validação em métodos cromatográficos e eletroforéticos. Química Nova. 27(1): 771-80.

Santiago WD, Cardoso MG, Duarte FC, Saczk AA & Lee Nelson. D. (2014). Ethyl carbamate in the production and aging of cachaça in oak (Quercus sp.) and amburana (Amburana cearencis) barrels. Journal of The Institute of Brewing. 120(1): 507-511.

Serafim FAT, Silva AA, Galinaro CA & Franco DW. (2012). Comparação do perfil químico entre cachaças de um mesmo vinho destiladas em alambiques e em colunas. Química Nova. 35(7): 1412-1416.

Serviço brasileiro de apoio as micro e pequenas empresas. (2015). Cachaça artesanal. Brasília. (2014). (Série Estudos Mercadológicos). Disponível em: <http://bis.sebrae.com.br/GestorRepositorio/ARQUIVOS_CH RONUS/bds/bds.nsf/444c2683e8debad2d7f38f49e848f449/$File/4248.pdf>.

Snyder, L. R.; Kirkland, J. J.; Glajch, J. L. (1997). Practical HPLC method development. 2°. ed. New York, 694-697p.

Souza PP, Oliveira LCA, Catharino RR, Eberlin MN, Augusti DV & Siabald HGL. Augusti, R. (2009). Brazilian cachaça: “Single shot” typification of fresh alembic and industrial samples via electrospray ionization spectrometry fingerprinting. Food Chemistry. 115(4): 1064-1068.

Vilanova M, Genisheva Z, Masa A & Oliveira JM. (2010). Correlation between volatile composition and sensory properties in Spanish Albariño wines, Microchemical Journal. 95(5): 240-246.

Zacaroni LM, Cardoso MG, Saczk AA, Santiago WD, Anjos JP, Masson J, Duarte FC & Nelson DL. (2011). Caracterização e quantificação de contaminantes em aguardentes de cana. Química Nova. 34(1):320-324.

Downloads

Published

16/06/2020

How to Cite

RODRIGUES, L. M. A.; CARDOSO, M. das G.; SANTIAGO, W. D.; BARBOSA, R. B.; SANTIAGO, J. de A.; LIMA, L. M. Z.; NELSON, D. L. Organic contaminants in distilled sugar cane spirits produced by column and copper alembic distillation. Research, Society and Development, [S. l.], v. 9, n. 7, p. e930974879, 2020. DOI: 10.33448/rsd-v9i7.4879. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4879. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences