Influence of pasteurization on the chemical, physical, and microbiological characteristics of uvaia pulp (Eugenia pyriformis Cambess)

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.5192

Keywords:

Native fruits; bioactive compounds; antioxidant activity; heat treatment.

Abstract

The uvaia is a fruit native to Brazil that has been recognized for its high content of bioactive compounds. However, this fruit is highly perishable and, therefore, transforming it into pasteurized pulp is an alternative to increase its consumption and commercialization. Thus, the aim of this study was to evaluate the effect of pasteurization on the chemical, physical, and microbiological characteristics of the uvaia pulp. This study investigated the contents of sugar, phenolic compounds, flavonoids, antioxidant activity (FRAP and ABTS), ascorbic acid, carotenoid, color, E.coli, Salmonella sp., and mold and yeast of the pasteurized pulp samples (85 °C for 1 and 5 minutes), in comparison with the control (without pasteurization). The heat treatment reduced the content of fructose, glucose and sucrose of the pulp samples. The contents of phenolic compounds and flavonoids increased in the samples pasteurized for 1 minute, but decreased after 5 minutes of the treatment. There was a decrease in ascorbic acid and an increase in the antioxidant activity of the pulp samples when pasteurization time was increased. On the other hand, the total carotenoid content was not affected by the heat treatment. Pasteurization did not affect the color parameters L* and b*, but it increased the tendency to the red color (a*) of the pulps. In the microbiological results, no differences were noted between the control and the pasteurized samples. Thus, it is possible to conclude that pasteurization at 85 °C for 1 minute provided a better preservation of the characteristics of the uvaia pulp.

References

Agência Nacional de Vigilância Sanitária. (2019a). Padrões microbiológico para alimentos e sua aplicação. (Resolução da Diretoria Colegiada - RDC nº. 331, de 26 de dezembro de 2019). D.O.U. - Diário Oficial da União; Poder executivo. Disponível em: http://portal.anvisa.gov.br/documents/10181/4660474/RDC_331_2019_COMP.pdf/c9282210-371f-4fb6-b343-7622ca9ec493

Agência Nacional de Vigilância Sanitária. (2019b). Listas de padrões microbiológicos para alimentos prontos para oferta ao consumidor. (Instrução Normativa - IN nº. 60, de 23 de dezembro de 2019). D.O.U. - Diário Oficial da União; Poder executivo. Disponível em: http://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-60-de-23-de-dezembro-de-2019-235332356

Araújo, F. F. de, Neri-Numa, I. A., de Paulo Farias, D., da Cunha, G. R. M. C., & Pastore, G. M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International, 121, 57–72. doi: 10.1016/j.foodres.2019.03.018

Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a measure of “‘Antioxidant Power’”: The FRAP Assay. Analytical Biochemistry, 239, 70–76. doi: 10.1006/abio.1996.0292

Branco, I. G., Moraes, I. C. F., Argandoña, E. J. S., Madrona, G. S., dos Santos, C., Ruiz, A. L. T. G., & Haminiuk, C. W. I. (2016). Influence of pasteurization on antioxidant and in vitro anti-proliferative effects of jambolan (Syzygium cumini (L.) Skeels) fruit pulp. Industrial Crops and Products, 89, 225–230. doi: 10.1016/j.indcrop.2016.04.055

Caleb, O. J., Wegner, G., Rolleczek, C., Herppich, W. B., Geyer, M., & Mahajan, P. V. (2016). Hot water dipping: Impact on postharvest quality, individual sugars, and bioactive compounds during storage of ‘Sonata’ strawberry. Scientia Horticulturae, 210, 150–157. doi: 10.1016/j.scienta.2016.07.021

Downes F. P. & Ito, K. (2001). Compendium of methods of the microbiological examination of foods. Washington D.C.: American Public Health Association.

He, Z., Tao, Y., Zeng, M., Zhang, S., Tao, G., Qin, F., & Chen, J. (2016). High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chemistry, 200, 107–116. doi: 10.1016/j.foodchem.2016.01.045

Davies, B. H. (1976). Carotenoids. In T. W. Goodwin (Ed.) Chemistry and biochemistry of plant pigments (pp. 43–48). Oxford: Academic Press.

Franco, B. D. G. de M. (2015). Microrganismos em alimentos 8:utilização de dados para avaliação do controle de processo e aceitação de produto.São Paulo: Blucher.

He, Z., Tao, Y., Zeng, M., Zhang, S., Tao, G., Qin, F., & Chen, J. (2016). High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chemistry, 200, 107–116. doi: 10.1016/j.foodchem.2016.01.045

Jacomino, A. P., Silva, A. P. G. da, Freitas, T. P. de, & Morais, V. S. de P. (2018). Uvaia - Eugenia pyrifomis Cambes. In R. Sueli;E. de O. Silva & E. S. de Brito (Ed.), Exotic Fruits: reference guide (pp. 435–438), Oxford: Academic Press.

Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., & Holčíková, K. (2006). Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19 (4), 252–276. doi: 10.1016/j.jfca.2005.04.014

Mehta, B. M. (2015). Nutritional and Toxicological Aspects of the Chemical Changes of Food Components and Nutrients During Heating and Cooking. In P. C. K. Cheung (Ed.) Handbook of Food Chemistry (pp. 898–932), Berlin: Springer.

Neves, L. N. de O., Marques, R., da Silva, P. H. F., & de Oliveira, M. A. L. (2018). Lactulose determination in UHT milk by CZE-UV with indirect detection. Food Chemistry, 258, 337–342. doi: 10.1016/j.foodchem.2018.03.069

Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. doi: 10.1016/j.foodchem.2017.04.114

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pereira, M. C., Steffens, R. S., Jablonski, A., Hertz, P. F., De O. Rios, A., Vizzotto, M., & Flôres, S. H. (2012). Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. Journal of Agricultural and Food Chemistry, 60 (12), 3061–3067. doi: 10.1021/jf205263

Re, R., Pellegrini, N., Proteggente, A., Ananth, P., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology & Medicine, 26 (9–10), 1231–1237. doi: 10.1016/s0891-5849(98)00315-3

Rufino, Maria do Socorro M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121 (4), 996–1002. doi: 10.1016/j.foodchem.2010.01.037

Schmidt, H. de O., Rockett, F. C., Pagno, C. H., Possa, J., Assis, R. Q., de Oliveira, V. R., & Rios, A. de O. (2019). Vitamin and bioactive compound diversity of seven fruit species from south Brazil. Journal of the Science of Food and Agriculture, 99 (7), 3307–3317.

doi: 10.1002/jsfa.9544

Sganzerla, W. G., Beling, P. C., Ferreira, A. L. A., Azevedo, M. S., Ferrareze, J. P., Komatsu, R. A., & Lima Veeck, A. P. (2019). Geographical discrimination of uvaia (Eugenia pyriformis Cambess) by principal component analysis. Journal of the Science of Food and Agriculture, 99 (15), 6778–6787. doi: 10.1002/jsfa.9961

Silva, A. P. G. da, Spricigo, P. C., Purgatto, E., de Alencar, S. M., Sartori, S. F., & Jacomino, A. P. (2019). Chemical composition, nutritional value and bioactive compounds in six uvaia accessions. Food Chemistry, 294, 547–556. doi: 10.1016/j.foodchem.2019.04.121

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (50), 144–158. Disponível em: https://www.ajevonline.org/content/16/3/144.

Spudeit, D. A., Gonçalves, S., Bretanha, L. C., Claumann, C. A., Machado, R. A. F., & Micke, G. A. (2016). A systematic procedure to develop a capillary electrophoresis method using a minimal experimental data. Journal of the Brazilian Chemical Society, 27 (11), 1974–1979. doi: 10.5935/0103-5053.20160087

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64 (4), 555–559. doi: 10.1016/S0308-8146(98)00102-2

Zillo, R. R., Silva, P. P. M. da, Zannata, S., & Spoto, M. H. F. (2014). Parâmetros físico-químicos e sensoriais de polpa de uvaia (Eugenia pyriformis) submetidas à pasteurização. Bioenergia em revista: diálogos, 4 (2), 20–33. Disponível em: http://fatecpiracicaba.edu.br/revista/index.php/bioenergiaemrevista/article/view/133

Published

20/06/2020

How to Cite

BIANCHINI, C. B.; ARRIOLA, N. D. A.; SERAGLIO, S. K. T.; COSTA, A. C. de O.; RIBEIRO, D. H. B.; KOMATSU, R. A.; MACHADO, B. D.; AMBONI, R. D. de M. C.; FRITZEN-FREIRE, C. B. Influence of pasteurization on the chemical, physical, and microbiological characteristics of uvaia pulp (Eugenia pyriformis Cambess). Research, Society and Development, [S. l.], v. 9, n. 7, p. e993975192, 2020. DOI: 10.33448/rsd-v9i7.5192. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5192. Acesso em: 22 dec. 2024.

Issue

Section

Agrarian and Biological Sciences