Perspectiva terapéutica de la luz para el tratamiento del coronavirus
DOI:
https://doi.org/10.33448/rsd-v9i8.6320Palavras-chave:
Coronavirus; COVID-19; Láser; Diodo emisor de luz; LED; Fotobiomodulación.Resumo
Actualmente nos enfrentamos a una pandemia que continuamente causa altas tasas de muertes y consecuencias catastróficas e innumerables económicas y psicosociales. Por lo tanto, este período requiere una búsqueda rápida de procedimientos viables que nos permitan utilizar herramientas clínicas seguras y no invasivas como métodos profilácticos o incluso adyuvantes en el tratamiento de COVID-19, lo que constituye un desafío importante para la clínica médica. Los informes científicos muestran que en 1918 los impactos de la "gripe española" se redujeron significativamente después del tratamiento con luz, fototerapia. Por lo tanto, el objetivo de este estudio es analizar, a través de un estudio teórico de análisis reflexivo, los impactos de la fototerapia en pandemias e infecciones similares causadas por coronavirus. La evidencia muestra que la fototerapia que utiliza principalmente láseres de luz y diodos emisores de luz (LED) en la longitud de onda azul tiene un efecto antimicrobiano potencial, al igual que se ha demostrado que las longitudes de onda rojas e infrarrojas cercanas atenúan las enfermedades pulmonares y reducen los trastornos respiratorios similares a complicaciones asociadas con las infecciones por coronavirus. Por lo tanto, se sugiere, para el sector de la salud, la inclusión de tecnologías ligeras, de bajo costo y fácilmente disponibles dentro del arsenal de recursos terapéuticos, para pacientes con infecciones, incluido el coronavirus por COVID-19.
Referências
Aboualizadeh, E., Bumah, V. V., Masson-Meyers, D. S., Eells, J. T., Hirschmugl, C. J., & Enwemeka, C. S. (2017). Understanding the antimicrobial activity of selected disinfectants against methicillin-resistant Staphylococcus aureus (MRSA). PloS one, 12(10), e0186375. https://doi.org/10.1371/journal.pone.0186375
Aksenova, I. Z., & Burduli, N. M. (2016). Terapevticheskii arkhiv, 88(3), 32–35. https://doi.org/10.17116/terarkh201688332-35
Alpert J. S. (2010). Sunshine: clinical friend or foe?. The American journal of medicine, 123(4), 291–292. https://doi.org/10.1016/j.amjmed.2009.05.033
Alpert J. S. (2015). The Jeremiah Metzger Lecture: Jeremiah Metzger and the Era of Heliotherapy. Transactions of the American Clinical and Climatological Association, 126, 219–226.
Anders, J. J., Lanzafame, R. J., & Arany, P. R. (2015). Low-level light/laser therapy versus photobiomodulation therapy. Photomedicine and laser surgery, 33(4), 183–184. https://doi.org/10.1089/pho.2015.9848
Benedetti, F., Colombo, C., Barbini, B., Campori, E., & Smeraldi, E. (2001). Morning sunlight reduces length of hospitalization in bipolar depression. Journal of affective disorders, 62(3), 221–223. https://doi.org/10.1016/s0165-0327(00)00149-x
Biener, G., Masson-Meyers, D. S., Bumah, V. V., Hussey, G., Stoneman, M. R., Enwemeka, C. S., & Raicu, V. (2017). Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. Journal of photochemistry and photobiology. B, Biology, 170, 118–124. https://doi.org/10.1016/j.jphotobiol.2017.04.002
Brochetti, R. A., Leal, M. P., Rodrigues, R., da Palma, R. K., de Oliveira, L., Horliana, A., Damazo, A. S., de Oliveira, A., Paula Vieira, R., & Lino-Dos-Santos-Franco, A. (2017). Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice. Lasers in medical science, 32(8), 1825–1834. https://doi.org/10.1007/s10103-017-2281-z
Bumah, V. V., Masson-Meyers, D. S., & Enwemeka, C. S. (2015). Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers in surgery and medicine, 47(7), 595–601. https://doi.org/10.1002/lsm.22385
Bumah, V. V., Masson-Meyers, D. S., & Enwemeka, C. S. (2020). Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms. Journal of photochemistry and photobiology. B, Biology, 202, 111702. https://doi.org/10.1016/j.jphotobiol.2019.11170
Camacho, ACLF, Fuly, PSC, Santos, MLSC & Menezes, HF. (2020). Students in social vulnerability in distance education disciplines in times of COVID-19. (2020). Research, Society and Development, 9(7):1-12, e275973979.
Centers for Disease Control: Basic information about SARS, pages 1-2, January 13, 2004.
de Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M., Soares, C. R., Santos, T. G., Alves, C. E., Herculano, K. Z., Vieira, R. P., Lino-Dos-Santos-Franco, A., Albertini, R., Aimbire, F., & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. Journal of photochemistry and photobiology. B, Biology, 203, 111731. https://doi.org/10.1016/j.jphotobiol.2019.111731
de Lima, F., Villaverde, A. B., Salgado, M. A., Castro-Faria-Neto, H. C., Munin, E., Albertini, R., & Aimbire, F. (2010). Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. Journal of photochemistry and photobiology. B, Biology, 101(3), 271–278. https://doi.org/10.1016/j.jphotobiol.2010.07.012
de Sousa, N. T., Santos, M. F., Gomes, R. C., Brandino, H. E., Martinez, R., & de Jesus Guirro, R. R. (2015). Blue Laser Inhibits Bacterial Growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomedicine and laser surgery, 33(5), 278–282. https://doi.org/10.1089/pho.2014.3854
Enwemeka, C. S., Bumah, V. V., & Masson-Meyers, D. S. (2020). Light as a potential treatment for pandemic coronavirus infections: A perspective. Journal of photochemistry and photobiology. B, Biology, 207, 111891. https://doi.org/10.1016/j.jphotobiol.2020.111891
Gøtzsche P. C. (2011). Niels Finsen's treatment for lupus vulgaris. Journal of the Royal Society of Medicine, 104(1), 41–42. https://doi.org/10.1258/jrsm.2010.10k066
Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10.
Hamblin M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of biophotonics, 9(11-12), 1122–1124. https://doi.org/10.1002/jbio.201670113
Hamblin, M. R., Viveiros, J., Yang, C., Ahmadi, A., Ganz, R. A., & Tolkoff, M. J. (2005). Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrobial agents and chemotherapy, 49(7), 2822–2827. https://doi.org/10.1128/AAC.49.7.2822-2827.2005
Hobday, R. A., & Cason, J. W. (2009). The open-air treatment of pandemic influenza. American journal of public health, 99 Suppl 2(Suppl 2), S236–S242. https://doi.org/10.2105/AJPH.2008.134627
Hobday, R. A., & Dancer, S. J. (2013). Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. The Journal of hospital infection, 84(4), 271–282. https://doi.org/10.1016/j.jhin.2013.04.011
Hockberger P. E. (2000). The discovery of the damaging effect of sunlight on bacteria. Journal of photochemistry and photobiology. B, Biology, 58(2-3), 185–191. https://doi.org/10.1016/s1011-1344(00)00121-4
Hopkins, J. (2020). Coronavirus Resource Center. Im Internet (Stand: 19.04. 2020): https://coronavirus. jhu. edu/data.
Jester, B. J., Uyeki, T. M., Patel, A., Koonin, L., & Jernigan, D. B. (2018). 100 Years of Medical Countermeasures and Pandemic Influenza Preparedness. American journal of public health, 108(11), 1469–1472. https://doi.org/10.2105/AJPH.2018.304586
MacLean, M., Booth, M. G., Anderson, J. G., MacGregor, S. J., Woolsey, G. A., Coia, J. E., ... & Gettinby, G. (2013). Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. Journal of Infection Prevention, 14(5), 176-181. https://doi.org/110.1177/1757177413483646
Maclean, M., Macgregor, S. J., Anderson, J. G., Woolsey, G. A., Coia, J. E., Hamilton, K., Taggart, I., Watson, S. B., Thakker, B., & Gettinby, G. (2010). Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. The Journal of hospital infection, 76(3), 247–251. https://doi.org/10.1016/j.jhin.2010.07.010
Masson-Meyers, D. S., Bumah, V. V., Castel, C., Castel, D., & Enwemeka, C. S. (2020). Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. Journal of photochemistry and photobiology. B, Biology, 202, 111719. https://doi.org/10.1016/j.jphotobiol.2019.111719
McDonagh A. F. (2001). Phototherapy: from ancient Egypt to the new millennium. Journal of perinatology: official journal of the California Perinatal Association, 21 Suppl 1, S7–S12. https://doi.org/10.1038/sj.jp.7210625
Møller, K. I., Kongshoj, B., Philipsen, P. A., Thomsen, V. O., & Wulf, H. C. (2005). How Finsen's light cured lupus vulgaris. Photodermatology, photoimmunology & photomedicine, 21(3), 118–124. https://doi.org/10.1111/j.1600-0781.2005.00159.x
OMS: Atualizaçãooficial do COVID. [Citado 2020 jun 27]. Disponível em: https://www.paho.org/bra.
Pandey, K. B., & Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative medicine and cellular longevity, 3(1), 2–12. https://doi.org/10.4161/oxim.3.1.10476
Roelandts R. (2002). The history of phototherapy: something new under the sun?. Journal of the American Academy of Dermatology, 46(6), 926–930. https://doi.org/10.1067/mjd.2002.121354
Santiago, E.J.P., Freire, A.K.S., Ferreira, D.S.A., Amorim, J.F., Cunha, A.L.X., Freitas, J.R., Silva, A.S.A., Moreira, G.R., Cantalice, J.R.B. & Cunha Filho, M. (2020). Velocity of deaths and confirmed cases of COVID-19 in Brazil, Italy and worldwide. Research, Society and Development, 9(7): 1-18, e e263974085.
Shany-Kdoshim, S., Polak, D., Houri-Haddad, Y., & Feuerstein, O. (2019). Killing mechanism of bacteria within multi-species biofilm by blue light. Journal of oral microbiology, 11(1), 1628577. https://doi.org/10.1080/20002297.2019.1628577
Snellman E, Lauharanta J, Reunanen A, et al. Effect of heliotherapy on skin and joint symptoms in psoriasis: a 6-month follow-up study. Br J Dermatol. 1993;128(2):172-177. doi:10.1111/j.1365-2133.1993.tb15147.x
Spinney L. (2018). The Spanish flu: an interdisciplinary problem. Lancet (London, England), 392(10164), 2552. https://doi.org/10.1016/S0140-6736(18)32222-0
Steffens I. (2020). A hundred days into the coronavirus disease (COVID-19) pandemic. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(14), 2000550. https://doi.org/10.2807/1560-7917.ES.2020.25.14.2000550
Wang, Y., Ferrer-Espada, R., Baglo, Y., Gu, Y., & Dai, T. (2019). Antimicrobial Blue Light Inactivation of Neisseria gonorrhoeae: Roles of Wavelength, Endogenous Photosensitizer, Oxygen, and Reactive Oxygen Species. Lasers in surgery and medicine, 51(9), 815–823. https://doi.org/10.1002/lsm.23104
Yang, P., Wang, N., Wang, C., Yao, Y., Fu, X., Yu, W., Cai, R., & Yao, M. (2017). 460nm visible light irradiation eradicates MRSA via inducing prophage activation. Journal of photochemistry and photobiology. B, Biology, 166, 311–322. https://doi.org/10.1016/j.jphotobiol.2016.12.001
Yoshida, A., Sasaki, H., Toyama, T., Araki, M., Fujioka, J., Tsukiyama, K., Hamada, N., & Yoshino, F. (2017). Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Scientific reports, 7(1), 5225. https://doi.org/10.1038/s41598-017-05706-1
Yusupalieva, M. M., & Savtchenko, V. M. (2017). Éffektivnost' kombinirovannoĭ lazerterapii v lechenii bol'nykh bronkhial'noĭ astmoĭ, sochetaiushcheĭsia s allergicheskim rinitom [The effectiveness of combined laser therapy for the treatment of the patients presenting with bronchial asthma and concomitant allergic rhinitis]. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury, 94(4), 14–18. https://doi.org/10.17116/kurort201794414-18
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Daniela Bezerra Macedo, Carla Roberta Tim, Juliana Bezerra Macedo, Cintia Cristina Santi Martignago, Lívia Assis

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.