Therapeutic perspective of light for coronavirus treatment
DOI:
https://doi.org/10.33448/rsd-v9i8.6320Keywords:
Coronavirus; COVID-19; Laser; Light emitting diode; LED; Photobiomodulation.Abstract
We are currently facing a pandemic that continuously causes high rates of deaths and catastrophic and countless economic and psychosocial consequences. Thus, this period requires a quick search for viable procedures that can allow us to use safe and non-invasive clinical tools as prophylactic or even adjuvant methods in the treatment of COVID-19, thus constituting an important challenge to the medical clinic. Scientific reports show that in 1918 the impacts of “Spanish influenza” were reduced significantly after treatment with light, phototherapy. Thus, the objective of this study is to analyze, through a theoretical study of reflective analysis, the impacts of phototherapy on pandemic and similar infections caused by coronavirus. Evidence shows that phototherapy using mainly light lasers and light-emitting diodes (LEDs) at the blue wavelength has a potential antimicrobial effect, just as red and near-infrared wavelengths have been shown to attenuate lung diseases and reduce respiratory disorders similar to complications associated with coronavirus infections. Thus, it is suggested, for the health sector, the inclusion of light technologies, of low cost and readily available within the arsenal of therapeutic resources, for patients with infections, including coronavirus by COVID-19.
References
Aboualizadeh, E., Bumah, V. V., Masson-Meyers, D. S., Eells, J. T., Hirschmugl, C. J., & Enwemeka, C. S. (2017). Understanding the antimicrobial activity of selected disinfectants against methicillin-resistant Staphylococcus aureus (MRSA). PloS one, 12(10), e0186375. https://doi.org/10.1371/journal.pone.0186375
Aksenova, I. Z., & Burduli, N. M. (2016). Terapevticheskii arkhiv, 88(3), 32–35. https://doi.org/10.17116/terarkh201688332-35
Alpert J. S. (2010). Sunshine: clinical friend or foe?. The American journal of medicine, 123(4), 291–292. https://doi.org/10.1016/j.amjmed.2009.05.033
Alpert J. S. (2015). The Jeremiah Metzger Lecture: Jeremiah Metzger and the Era of Heliotherapy. Transactions of the American Clinical and Climatological Association, 126, 219–226.
Anders, J. J., Lanzafame, R. J., & Arany, P. R. (2015). Low-level light/laser therapy versus photobiomodulation therapy. Photomedicine and laser surgery, 33(4), 183–184. https://doi.org/10.1089/pho.2015.9848
Benedetti, F., Colombo, C., Barbini, B., Campori, E., & Smeraldi, E. (2001). Morning sunlight reduces length of hospitalization in bipolar depression. Journal of affective disorders, 62(3), 221–223. https://doi.org/10.1016/s0165-0327(00)00149-x
Biener, G., Masson-Meyers, D. S., Bumah, V. V., Hussey, G., Stoneman, M. R., Enwemeka, C. S., & Raicu, V. (2017). Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. Journal of photochemistry and photobiology. B, Biology, 170, 118–124. https://doi.org/10.1016/j.jphotobiol.2017.04.002
Brochetti, R. A., Leal, M. P., Rodrigues, R., da Palma, R. K., de Oliveira, L., Horliana, A., Damazo, A. S., de Oliveira, A., Paula Vieira, R., & Lino-Dos-Santos-Franco, A. (2017). Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice. Lasers in medical science, 32(8), 1825–1834. https://doi.org/10.1007/s10103-017-2281-z
Bumah, V. V., Masson-Meyers, D. S., & Enwemeka, C. S. (2015). Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers in surgery and medicine, 47(7), 595–601. https://doi.org/10.1002/lsm.22385
Bumah, V. V., Masson-Meyers, D. S., & Enwemeka, C. S. (2020). Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms. Journal of photochemistry and photobiology. B, Biology, 202, 111702. https://doi.org/10.1016/j.jphotobiol.2019.11170
Camacho, ACLF, Fuly, PSC, Santos, MLSC & Menezes, HF. (2020). Students in social vulnerability in distance education disciplines in times of COVID-19. (2020). Research, Society and Development, 9(7):1-12, e275973979.
Centers for Disease Control: Basic information about SARS, pages 1-2, January 13, 2004.
de Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M., Soares, C. R., Santos, T. G., Alves, C. E., Herculano, K. Z., Vieira, R. P., Lino-Dos-Santos-Franco, A., Albertini, R., Aimbire, F., & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. Journal of photochemistry and photobiology. B, Biology, 203, 111731. https://doi.org/10.1016/j.jphotobiol.2019.111731
de Lima, F., Villaverde, A. B., Salgado, M. A., Castro-Faria-Neto, H. C., Munin, E., Albertini, R., & Aimbire, F. (2010). Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. Journal of photochemistry and photobiology. B, Biology, 101(3), 271–278. https://doi.org/10.1016/j.jphotobiol.2010.07.012
de Sousa, N. T., Santos, M. F., Gomes, R. C., Brandino, H. E., Martinez, R., & de Jesus Guirro, R. R. (2015). Blue Laser Inhibits Bacterial Growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomedicine and laser surgery, 33(5), 278–282. https://doi.org/10.1089/pho.2014.3854
Enwemeka, C. S., Bumah, V. V., & Masson-Meyers, D. S. (2020). Light as a potential treatment for pandemic coronavirus infections: A perspective. Journal of photochemistry and photobiology. B, Biology, 207, 111891. https://doi.org/10.1016/j.jphotobiol.2020.111891
Gøtzsche P. C. (2011). Niels Finsen's treatment for lupus vulgaris. Journal of the Royal Society of Medicine, 104(1), 41–42. https://doi.org/10.1258/jrsm.2010.10k066
Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10.
Hamblin M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of biophotonics, 9(11-12), 1122–1124. https://doi.org/10.1002/jbio.201670113
Hamblin, M. R., Viveiros, J., Yang, C., Ahmadi, A., Ganz, R. A., & Tolkoff, M. J. (2005). Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrobial agents and chemotherapy, 49(7), 2822–2827. https://doi.org/10.1128/AAC.49.7.2822-2827.2005
Hobday, R. A., & Cason, J. W. (2009). The open-air treatment of pandemic influenza. American journal of public health, 99 Suppl 2(Suppl 2), S236–S242. https://doi.org/10.2105/AJPH.2008.134627
Hobday, R. A., & Dancer, S. J. (2013). Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. The Journal of hospital infection, 84(4), 271–282. https://doi.org/10.1016/j.jhin.2013.04.011
Hockberger P. E. (2000). The discovery of the damaging effect of sunlight on bacteria. Journal of photochemistry and photobiology. B, Biology, 58(2-3), 185–191. https://doi.org/10.1016/s1011-1344(00)00121-4
Hopkins, J. (2020). Coronavirus Resource Center. Im Internet (Stand: 19.04. 2020): https://coronavirus. jhu. edu/data.
Jester, B. J., Uyeki, T. M., Patel, A., Koonin, L., & Jernigan, D. B. (2018). 100 Years of Medical Countermeasures and Pandemic Influenza Preparedness. American journal of public health, 108(11), 1469–1472. https://doi.org/10.2105/AJPH.2018.304586
MacLean, M., Booth, M. G., Anderson, J. G., MacGregor, S. J., Woolsey, G. A., Coia, J. E., ... & Gettinby, G. (2013). Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. Journal of Infection Prevention, 14(5), 176-181. https://doi.org/110.1177/1757177413483646
Maclean, M., Macgregor, S. J., Anderson, J. G., Woolsey, G. A., Coia, J. E., Hamilton, K., Taggart, I., Watson, S. B., Thakker, B., & Gettinby, G. (2010). Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. The Journal of hospital infection, 76(3), 247–251. https://doi.org/10.1016/j.jhin.2010.07.010
Masson-Meyers, D. S., Bumah, V. V., Castel, C., Castel, D., & Enwemeka, C. S. (2020). Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. Journal of photochemistry and photobiology. B, Biology, 202, 111719. https://doi.org/10.1016/j.jphotobiol.2019.111719
McDonagh A. F. (2001). Phototherapy: from ancient Egypt to the new millennium. Journal of perinatology: official journal of the California Perinatal Association, 21 Suppl 1, S7–S12. https://doi.org/10.1038/sj.jp.7210625
Møller, K. I., Kongshoj, B., Philipsen, P. A., Thomsen, V. O., & Wulf, H. C. (2005). How Finsen's light cured lupus vulgaris. Photodermatology, photoimmunology & photomedicine, 21(3), 118–124. https://doi.org/10.1111/j.1600-0781.2005.00159.x
OMS: Atualizaçãooficial do COVID. [Citado 2020 jun 27]. Disponível em: https://www.paho.org/bra.
Pandey, K. B., & Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative medicine and cellular longevity, 3(1), 2–12. https://doi.org/10.4161/oxim.3.1.10476
Roelandts R. (2002). The history of phototherapy: something new under the sun?. Journal of the American Academy of Dermatology, 46(6), 926–930. https://doi.org/10.1067/mjd.2002.121354
Santiago, E.J.P., Freire, A.K.S., Ferreira, D.S.A., Amorim, J.F., Cunha, A.L.X., Freitas, J.R., Silva, A.S.A., Moreira, G.R., Cantalice, J.R.B. & Cunha Filho, M. (2020). Velocity of deaths and confirmed cases of COVID-19 in Brazil, Italy and worldwide. Research, Society and Development, 9(7): 1-18, e e263974085.
Shany-Kdoshim, S., Polak, D., Houri-Haddad, Y., & Feuerstein, O. (2019). Killing mechanism of bacteria within multi-species biofilm by blue light. Journal of oral microbiology, 11(1), 1628577. https://doi.org/10.1080/20002297.2019.1628577
Snellman E, Lauharanta J, Reunanen A, et al. Effect of heliotherapy on skin and joint symptoms in psoriasis: a 6-month follow-up study. Br J Dermatol. 1993;128(2):172-177. doi:10.1111/j.1365-2133.1993.tb15147.x
Spinney L. (2018). The Spanish flu: an interdisciplinary problem. Lancet (London, England), 392(10164), 2552. https://doi.org/10.1016/S0140-6736(18)32222-0
Steffens I. (2020). A hundred days into the coronavirus disease (COVID-19) pandemic. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(14), 2000550. https://doi.org/10.2807/1560-7917.ES.2020.25.14.2000550
Wang, Y., Ferrer-Espada, R., Baglo, Y., Gu, Y., & Dai, T. (2019). Antimicrobial Blue Light Inactivation of Neisseria gonorrhoeae: Roles of Wavelength, Endogenous Photosensitizer, Oxygen, and Reactive Oxygen Species. Lasers in surgery and medicine, 51(9), 815–823. https://doi.org/10.1002/lsm.23104
Yang, P., Wang, N., Wang, C., Yao, Y., Fu, X., Yu, W., Cai, R., & Yao, M. (2017). 460nm visible light irradiation eradicates MRSA via inducing prophage activation. Journal of photochemistry and photobiology. B, Biology, 166, 311–322. https://doi.org/10.1016/j.jphotobiol.2016.12.001
Yoshida, A., Sasaki, H., Toyama, T., Araki, M., Fujioka, J., Tsukiyama, K., Hamada, N., & Yoshino, F. (2017). Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Scientific reports, 7(1), 5225. https://doi.org/10.1038/s41598-017-05706-1
Yusupalieva, M. M., & Savtchenko, V. M. (2017). Éffektivnost' kombinirovannoĭ lazerterapii v lechenii bol'nykh bronkhial'noĭ astmoĭ, sochetaiushcheĭsia s allergicheskim rinitom [The effectiveness of combined laser therapy for the treatment of the patients presenting with bronchial asthma and concomitant allergic rhinitis]. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury, 94(4), 14–18. https://doi.org/10.17116/kurort201794414-18
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Daniela Bezerra Macedo, Carla Roberta Tim, Juliana Bezerra Macedo, Cintia Cristina Santi Martignago, Lívia Assis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.