Perspectiva terapéutica de la luz para el tratamiento del coronavirus

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.6320

Palavras-chave:

Coronavirus; COVID-19; Láser; Diodo emisor de luz; LED; Fotobiomodulación.

Resumo

Actualmente nos enfrentamos a una pandemia que continuamente causa altas tasas de muertes y consecuencias catastróficas e innumerables económicas y psicosociales. Por lo tanto, este período requiere una búsqueda rápida de procedimientos viables que nos permitan utilizar herramientas clínicas seguras y no invasivas como métodos profilácticos o incluso adyuvantes en el tratamiento de COVID-19, lo que constituye un desafío importante para la clínica médica. Los informes científicos muestran que en 1918 los impactos de la "gripe española" se redujeron significativamente después del tratamiento con luz, fototerapia. Por lo tanto, el objetivo de este estudio es analizar, a través de un estudio teórico de análisis reflexivo, los impactos de la fototerapia en pandemias e infecciones similares causadas por coronavirus. La evidencia muestra que la fototerapia que utiliza principalmente láseres de luz y diodos emisores de luz (LED) en la longitud de onda azul tiene un efecto antimicrobiano potencial, al igual que se ha demostrado que las longitudes de onda rojas e infrarrojas cercanas atenúan las enfermedades pulmonares y reducen los trastornos respiratorios similares a complicaciones asociadas con las infecciones por coronavirus. Por lo tanto, se sugiere, para el sector de la salud, la inclusión de tecnologías ligeras, de bajo costo y fácilmente disponibles dentro del arsenal de recursos terapéuticos, para pacientes con infecciones, incluido el coronavirus por COVID-19.

Biografia do Autor

Daniela Bezerra Macedo, Universidade Brasil

Enfermeira. Mestranda em Engenharia Biomédica pela Universidade Brasil.

Carla Roberta Tim, Universidade Brasil

Doutora em Biotecnologia pela Universidade Federal de São Carlos. Docente do Instituto Científico Tecnológico da Universidade Brasil

Juliana Bezerra Macedo, Universidade Brasil Universidade Estadual do Piauí

Doutoranda do Programa de pós graduação em Engenharia Biomédica da Universidade Brasil. Docente da Universidade Estadual do Piauí.

Glauber Bezerra Macedo, Universidade Estadual do Piauí

Docente, do curso de enfermagem, da Universidade Estadual do Piauí.

Cintia Cristina Santi Martignago, Centro Universitário UNIFAAT Universidade Federal de São Carlos

Doutora em Fisioterapia pela Universidade Federal de São Carlos. Docente do Centro Universitário UNIFAAT

Lívia Assis Garcia, Universidade Brasil

Docente do Instituto Científico e Tecnológico da Universidade Brasil

Referências

Aboualizadeh, E., Bumah, V. V., Masson-Meyers, D. S., Eells, J. T., Hirschmugl, C. J., & Enwemeka, C. S. (2017). Understanding the antimicrobial activity of selected disinfectants against methicillin-resistant Staphylococcus aureus (MRSA). PloS one, 12(10), e0186375. https://doi.org/10.1371/journal.pone.0186375

Aksenova, I. Z., & Burduli, N. M. (2016). Terapevticheskii arkhiv, 88(3), 32–35. https://doi.org/10.17116/terarkh201688332-35

Alpert J. S. (2010). Sunshine: clinical friend or foe?. The American journal of medicine, 123(4), 291–292. https://doi.org/10.1016/j.amjmed.2009.05.033

Alpert J. S. (2015). The Jeremiah Metzger Lecture: Jeremiah Metzger and the Era of Heliotherapy. Transactions of the American Clinical and Climatological Association, 126, 219–226.

Anders, J. J., Lanzafame, R. J., & Arany, P. R. (2015). Low-level light/laser therapy versus photobiomodulation therapy. Photomedicine and laser surgery, 33(4), 183–184. https://doi.org/10.1089/pho.2015.9848

Benedetti, F., Colombo, C., Barbini, B., Campori, E., & Smeraldi, E. (2001). Morning sunlight reduces length of hospitalization in bipolar depression. Journal of affective disorders, 62(3), 221–223. https://doi.org/10.1016/s0165-0327(00)00149-x

Biener, G., Masson-Meyers, D. S., Bumah, V. V., Hussey, G., Stoneman, M. R., Enwemeka, C. S., & Raicu, V. (2017). Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. Journal of photochemistry and photobiology. B, Biology, 170, 118–124. https://doi.org/10.1016/j.jphotobiol.2017.04.002

Brochetti, R. A., Leal, M. P., Rodrigues, R., da Palma, R. K., de Oliveira, L., Horliana, A., Damazo, A. S., de Oliveira, A., Paula Vieira, R., & Lino-Dos-Santos-Franco, A. (2017). Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice. Lasers in medical science, 32(8), 1825–1834. https://doi.org/10.1007/s10103-017-2281-z

Bumah, V. V., Masson-Meyers, D. S., & Enwemeka, C. S. (2015). Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers in surgery and medicine, 47(7), 595–601. https://doi.org/10.1002/lsm.22385

Bumah, V. V., Masson-Meyers, D. S., & Enwemeka, C. S. (2020). Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms. Journal of photochemistry and photobiology. B, Biology, 202, 111702. https://doi.org/10.1016/j.jphotobiol.2019.11170

Camacho, ACLF, Fuly, PSC, Santos, MLSC & Menezes, HF. (2020). Students in social vulnerability in distance education disciplines in times of COVID-19. (2020). Research, Society and Development, 9(7):1-12, e275973979.

Centers for Disease Control: Basic information about SARS, pages 1-2, January 13, 2004.

de Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M., Soares, C. R., Santos, T. G., Alves, C. E., Herculano, K. Z., Vieira, R. P., Lino-Dos-Santos-Franco, A., Albertini, R., Aimbire, F., & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. Journal of photochemistry and photobiology. B, Biology, 203, 111731. https://doi.org/10.1016/j.jphotobiol.2019.111731

de Lima, F., Villaverde, A. B., Salgado, M. A., Castro-Faria-Neto, H. C., Munin, E., Albertini, R., & Aimbire, F. (2010). Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. Journal of photochemistry and photobiology. B, Biology, 101(3), 271–278. https://doi.org/10.1016/j.jphotobiol.2010.07.012

de Sousa, N. T., Santos, M. F., Gomes, R. C., Brandino, H. E., Martinez, R., & de Jesus Guirro, R. R. (2015). Blue Laser Inhibits Bacterial Growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomedicine and laser surgery, 33(5), 278–282. https://doi.org/10.1089/pho.2014.3854

Enwemeka, C. S., Bumah, V. V., & Masson-Meyers, D. S. (2020). Light as a potential treatment for pandemic coronavirus infections: A perspective. Journal of photochemistry and photobiology. B, Biology, 207, 111891. https://doi.org/10.1016/j.jphotobiol.2020.111891

Gøtzsche P. C. (2011). Niels Finsen's treatment for lupus vulgaris. Journal of the Royal Society of Medicine, 104(1), 41–42. https://doi.org/10.1258/jrsm.2010.10k066

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10.

Hamblin M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of biophotonics, 9(11-12), 1122–1124. https://doi.org/10.1002/jbio.201670113

Hamblin, M. R., Viveiros, J., Yang, C., Ahmadi, A., Ganz, R. A., & Tolkoff, M. J. (2005). Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrobial agents and chemotherapy, 49(7), 2822–2827. https://doi.org/10.1128/AAC.49.7.2822-2827.2005

Hobday, R. A., & Cason, J. W. (2009). The open-air treatment of pandemic influenza. American journal of public health, 99 Suppl 2(Suppl 2), S236–S242. https://doi.org/10.2105/AJPH.2008.134627

Hobday, R. A., & Dancer, S. J. (2013). Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. The Journal of hospital infection, 84(4), 271–282. https://doi.org/10.1016/j.jhin.2013.04.011

Hockberger P. E. (2000). The discovery of the damaging effect of sunlight on bacteria. Journal of photochemistry and photobiology. B, Biology, 58(2-3), 185–191. https://doi.org/10.1016/s1011-1344(00)00121-4

Hopkins, J. (2020). Coronavirus Resource Center. Im Internet (Stand: 19.04. 2020): https://coronavirus. jhu. edu/data.

Jester, B. J., Uyeki, T. M., Patel, A., Koonin, L., & Jernigan, D. B. (2018). 100 Years of Medical Countermeasures and Pandemic Influenza Preparedness. American journal of public health, 108(11), 1469–1472. https://doi.org/10.2105/AJPH.2018.304586

MacLean, M., Booth, M. G., Anderson, J. G., MacGregor, S. J., Woolsey, G. A., Coia, J. E., ... & Gettinby, G. (2013). Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. Journal of Infection Prevention, 14(5), 176-181. https://doi.org/110.1177/1757177413483646

Maclean, M., Macgregor, S. J., Anderson, J. G., Woolsey, G. A., Coia, J. E., Hamilton, K., Taggart, I., Watson, S. B., Thakker, B., & Gettinby, G. (2010). Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. The Journal of hospital infection, 76(3), 247–251. https://doi.org/10.1016/j.jhin.2010.07.010

Masson-Meyers, D. S., Bumah, V. V., Castel, C., Castel, D., & Enwemeka, C. S. (2020). Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. Journal of photochemistry and photobiology. B, Biology, 202, 111719. https://doi.org/10.1016/j.jphotobiol.2019.111719

McDonagh A. F. (2001). Phototherapy: from ancient Egypt to the new millennium. Journal of perinatology: official journal of the California Perinatal Association, 21 Suppl 1, S7–S12. https://doi.org/10.1038/sj.jp.7210625

Møller, K. I., Kongshoj, B., Philipsen, P. A., Thomsen, V. O., & Wulf, H. C. (2005). How Finsen's light cured lupus vulgaris. Photodermatology, photoimmunology & photomedicine, 21(3), 118–124. https://doi.org/10.1111/j.1600-0781.2005.00159.x

OMS: Atualizaçãooficial do COVID. [Citado 2020 jun 27]. Disponível em: https://www.paho.org/bra.

Pandey, K. B., & Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative medicine and cellular longevity, 3(1), 2–12. https://doi.org/10.4161/oxim.3.1.10476

Roelandts R. (2002). The history of phototherapy: something new under the sun?. Journal of the American Academy of Dermatology, 46(6), 926–930. https://doi.org/10.1067/mjd.2002.121354

Santiago, E.J.P., Freire, A.K.S., Ferreira, D.S.A., Amorim, J.F., Cunha, A.L.X., Freitas, J.R., Silva, A.S.A., Moreira, G.R., Cantalice, J.R.B. & Cunha Filho, M. (2020). Velocity of deaths and confirmed cases of COVID-19 in Brazil, Italy and worldwide. Research, Society and Development, 9(7): 1-18, e e263974085.

Shany-Kdoshim, S., Polak, D., Houri-Haddad, Y., & Feuerstein, O. (2019). Killing mechanism of bacteria within multi-species biofilm by blue light. Journal of oral microbiology, 11(1), 1628577. https://doi.org/10.1080/20002297.2019.1628577

Snellman E, Lauharanta J, Reunanen A, et al. Effect of heliotherapy on skin and joint symptoms in psoriasis: a 6-month follow-up study. Br J Dermatol. 1993;128(2):172-177. doi:10.1111/j.1365-2133.1993.tb15147.x

Spinney L. (2018). The Spanish flu: an interdisciplinary problem. Lancet (London, England), 392(10164), 2552. https://doi.org/10.1016/S0140-6736(18)32222-0

Steffens I. (2020). A hundred days into the coronavirus disease (COVID-19) pandemic. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(14), 2000550. https://doi.org/10.2807/1560-7917.ES.2020.25.14.2000550

Wang, Y., Ferrer-Espada, R., Baglo, Y., Gu, Y., & Dai, T. (2019). Antimicrobial Blue Light Inactivation of Neisseria gonorrhoeae: Roles of Wavelength, Endogenous Photosensitizer, Oxygen, and Reactive Oxygen Species. Lasers in surgery and medicine, 51(9), 815–823. https://doi.org/10.1002/lsm.23104

Yang, P., Wang, N., Wang, C., Yao, Y., Fu, X., Yu, W., Cai, R., & Yao, M. (2017). 460nm visible light irradiation eradicates MRSA via inducing prophage activation. Journal of photochemistry and photobiology. B, Biology, 166, 311–322. https://doi.org/10.1016/j.jphotobiol.2016.12.001

Yoshida, A., Sasaki, H., Toyama, T., Araki, M., Fujioka, J., Tsukiyama, K., Hamada, N., & Yoshino, F. (2017). Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Scientific reports, 7(1), 5225. https://doi.org/10.1038/s41598-017-05706-1

Yusupalieva, M. M., & Savtchenko, V. M. (2017). Éffektivnost' kombinirovannoĭ lazerterapii v lechenii bol'nykh bronkhial'noĭ astmoĭ, sochetaiushcheĭsia s allergicheskim rinitom [The effectiveness of combined laser therapy for the treatment of the patients presenting with bronchial asthma and concomitant allergic rhinitis]. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury, 94(4), 14–18. https://doi.org/10.17116/kurort201794414-18

Downloads

Publicado

19/07/2020

Como Citar

MACEDO, D. B.; TIM, C. R.; MACEDO, J. B.; MACEDO, G. B.; MARTIGNAGO, C. C. S.; GARCIA, L. A. Perspectiva terapéutica de la luz para el tratamiento del coronavirus. Research, Society and Development, [S. l.], v. 9, n. 8, p. e766986320, 2020. DOI: 10.33448/rsd-v9i8.6320. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6320. Acesso em: 19 maio. 2024.

Edição

Seção

Ciências da Saúde