In silico evaluation of the inhibitory effect of antiretrovirals Atazanavir and Darunavir on the main protease of SARS-CoV-2: docking studies and molecular dynamics

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.6562

Keywords:

Molecular anchorage; Protease inhibitor; Use of medicines.

Abstract

SARS-CoV-2 is part of an RNA virus family described again in 2019, causing the Covid-19 disease. The integration of computational strategies is of great importance in the identification and development of promising new compounds. Atazanavir and Darunavir, were designed to combat resistance to mutant drugs mainly by increasing the number of polar interactions with the main atoms in the HIV protease chain. This study aims to assess the molecular interaction of the drugs Atazanavir and Darunavir with the main SARS-CoV-2 protease through docking and molecular dynamics studies. This is a descriptive, experimental study with a qualitative and quantitative approach on the subject. For that, using the programs BIOVIA Discovery Studio, PyMol, AutoDock Tools 1.5.6, AutoDock Vina, the modeling and simulation of the anchoring of the drug at the action site were carried out. Lower scores were demonstrated, with -7.0 (Darunavir) the closest to the UAW 247 Inhibitor. It is possible to notice that the drugs showed similar residual bonds, also, in relation to the protease structure, the closest tested molecule was Atazanavir. Taking into account the stability of the RMSD values, it is valid to infer that in relation to the UAW 247 inhibitor, the drug Atazanavir is the one that best resembles, unlike Darunavir, which presents greater variations. The two drugs fit into the binding site mainly due to electrostatic interactions and hydrogen bonds. Atazanavir is the most similar to molecular activity, and Darunavir is the one with the best anchoring score.

Author Biographies

José Danilo de Sousa Silva, Centro Universitário Santo Agostinho

Centro Universitário Santo Agostinho, Teresina-PI

Samuel da Costa Leite, Centro Universitário Santo Agostinho

Centro Universitário Santo Agostinho, Teresina-PI

Maria Thalita Sobral da Silva, Faculdade do Médio Parnaíba

Centro Universitário Santo Agostinho, Teresina-PI

Anderson Wilbur Lopes Andrade, Universidade Federal do Rio Grande do Norte

Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal-RN

References

Baildya, N., Ghosh, N. N., & Chattopadhyay, A. P. (2020). Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies. Journal of Molecular Structure, 128595. doi:10.1016/j.molstruc.2020.128595

Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 Coronavirus Structure, Mechanism of Action, Antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–14. doi:10.1080/07391102.2020.1758788

Bursulaya, B. D., Totrov, M., Abagyan, R., & Brooks III, C. L. (2003). Comparative study of several algorithms for flexible ligand docking. Journal of Computer-Aided Molecular Design, 17(11), 755–63. doi:10.1023/b:jcam.0000017496.76572.6f

Ferreira, L., Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384–421. doi:10.3390/molecules200713384

Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. doi:10.1016/j.ijantimicag.2020.105924

Lima, C. M. A. O. (2020). Informações sobre o novo coronavírus (COVID-19). Radiol Bras, 53(2), 5-7, 2020. doi:10.1590/0100-3984.2020.53.2e1

Menéndez-Arias, L., & Tözsér, J. (2008). HIV-1 protease inhibitors: effects on HIV-2 replication and resistance. Trends in Pharmacological Sciences, 29(1), 42–49. doi:10.1016/j.tips.2007.10.013

Mittal, L., Kumari, A., Srivastava, M., Singh, M., & Asthana, S. (2020). Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. Journal of Biomolecular Structure and Dynamics, 1–26. doi:10.1080/07391102.2020.1768151

Pereira, A. S., et al. (2018). Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE/UFSM Editors. Retrieved from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Sousa G. A., Martins I. V. O., Pimentel V. D., & Sousa J. A. (2020). Análise in silico da farmacodinâmica, farmacocinética e toxicidade de dois compostos isolados da Actinidia deliciosa para investigação do seu potencial anti-hiperlipêmico. Research, Society and Development, 9(7), 1-20, e790974679. doi:10.33448/rsd-v9i7.4679

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 32, 455-61. doi:10.1002/jcc.21334

Uciechowska-Kaczmarzyk, U., Chauvot de Beauchene, I., & Samsonov, S. A. (2019). Docking software performance in protein-glycosaminoglycan systems. Journal of Molecular Graphics and Modelling, 90, 42–50. doi:10.1016/j.jmgm.2019.04.001

Wang, Q., He, J., Wu, D., Wang, J., Yan, J., & Li, H. (2015). Interaction of α-cyperone with human serum albumin: Determination of the binding site by using Discovery Studio and via spectroscopic methods. Journal of Luminescence, 164, 81–5. doi:10.1016/j.jlumin.2015.03.025

Downloads

Published

30/07/2020

How to Cite

SILVA, J. D. de S.; LEITE, S. da C.; SILVA, M. T. S. da; MEIRELLES, L. M. A.; ANDRADE, A. W. L. In silico evaluation of the inhibitory effect of antiretrovirals Atazanavir and Darunavir on the main protease of SARS-CoV-2: docking studies and molecular dynamics. Research, Society and Development, [S. l.], v. 9, n. 8, p. e826986562, 2020. DOI: 10.33448/rsd-v9i8.6562. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6562. Acesso em: 18 apr. 2024.

Issue

Section

Health Sciences