Mercury in fish commercialized in Minas Gerais and possible risks associated with its consumption

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.6881

Keywords:

Heavy metals; Dietary exposure; Food Contamination; Toxicity; Public health.

Abstract

The aim of the present study was to analyze the mercury content in fish commercialized in Minas Gerais, collected by the Food Monitoring Program of the Health Surveillance of Minas Gerais - PROGVISA, and to verify, based on these values, the risk of fish consumption. The total mercury content in 80 fish samples randomly collected from the Minas Gerais market was analyzed. The analyses were performed by atomic absorption spectrometry with gold amalgamation. From these values, the intake of methylmercury in Minas Gerais was estimated and it was compared with the toxicological reference parameters. Among the samples, 38.8% were from non-predatory fish and 61.2% were from predatory fish. The results indicated that the mercury levels found in most fish samples from Minas Gerais were below the maximum limits allowed by Brazilian legislation. Only 8.2% of the samples of predatory fish showed unsatisfactory results (contents> 1.0 mg / kg), only shark, in this case. In general, non-predatory fish and usually aquaculture fish, such as Tilapia, Panga and Salmon, had low mercury levels. The estimated mercury intake for the population of Minas Gerais was considered acceptable, without appreciable risk to health. Fish consumption following the recommendation of two to three servings per week, excluding fish at the top of the food chain, appears to be safe. The results indicate that mercury contents below the limits established by the Brazilian legislation are important to guarantee intake of this contaminant at safe levels.

References

Almeida G. P. B., (2015). Qualidade dos alimentos monitorados pelo PROGVISA/MG no período de 2007 a 2013 [Tese] Belo Horizonte: Universidade Federal de Minas Gerais.

Alva, C. V., Mársico, E. T., Ribeiro, R. D., da Silva Carneiro, C., Simões, J. S., da Silva Ferreira, M. (2020). Concentrations and health risk assessment of total mercury in canned tuna marketed in Southest Brazil. Journal of Food Composition and Analysis. May 1,88, 103357.

Azevedo, L. S., Almeida, M. G., Bastos, W. R., Suzuki, M. S., Recktenvald, M. C. N. N., Bastos, M. T. S., Vergílio, C. S., Souza, C. M. M. (2017). Organotropism of methylmercury in fish of the southeastern of Brazil. Chemosphere; 18, 746-753.

Bastos, W. R., Rebelo, M. F., Fonseca, M. F., Almeida, R., & Malm, O. (2008). A description of mercury in fishes from the Madeira River Basin, Amazon, Brazil. Acta Amazonica, 38(3), 431 – 438.

Bjørklund, G., Aaseth, J., Ajsuvakovad, O. P., Nikonorove, A. A., Skalny, A. V., Skalnay, M. G., Tinkov, A. A. (2017). Molecular interaction between mercury and selenium in neurotoxicity. Coordination Chemistry Reviews, 332, 30-37.

Botaro, D., Torres, J. P. M., Schramm, K. W., & Malm, O. (2012). Mercury levels in feed and muscle of farmed Tilapia. American Journal of Industrial Medicine. 55, 1159-1165.

Brasil - ANVISA. Resolução da diretoria colegiada – RDC nº 42, de 29 ago. 2013. Retrieved from http://portal.anvisa.gov.br/documents/33880/2568070/rdc0042_29_08_2013.pdf /c5a17d2d-a415-4330-90db-66b3f35d9fbd.

Cao, L., Liu, J., Dou, S., & Huang, W., (2019). Biomagnification of methylmercury in a marine food web in Laizhou Bay (North China) and associated potential risks to public health. Mar. Pollut. Bull. 150, 110762.

Caserta D., Graziano A., Monte G. L., Bordi G., & Moscarini M. (2013). Heavy metals and placental fetal-maternal barrier: a mini-review on the major concerns European. Review for Medical and Pharmacological Sciences; 17, 2198-2206.

Codex Secretariat (FAO/WHO). Procedural Manual of the Codex Alimentarius Commission. (26th ed.) Rome: FAO. 2018. 264 p. Retrieved from http://www.fao.org/document s/card/en/c/i8608en/

EFSA (European Food Safety Authority), (2012). Panel on Contaminants in the Food Chain (CONTAM): Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 10(12): 2985, 241 p.

Ekino, S., Susa, M., Ninomiya, T., Imamura, K., & Kitamura, T., (2007). Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. J. Neurol. Sci. 262(1), 131-144.

EPA - United States Environmental Protection Agency. - Integrated Risk Information System, 2001 (IRIS) Methylmercury (MeHg). Retrieved from https://cfpub.epa.gov/ncea /iris2/chemicallanding.cfm?substance_nmbr=73.

EPA – United States Environmental Protection Agency. - Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. 2018. Retrieved from https://www.epa.gov/sites/ production/files/201507/documents/epa-7473.pdf.

FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization) (1995), Codex Alimentarius Comission – Versão 193 1995. Rome: WHO, FAO.

FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization) (2011). Report of the Joint FAO/WHO expert consultation on the risks and benefits of fish consumption. FAO Fish Aquacult. Rep. 978, 1-50.

FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization) (2019). General Standard for Contaminants and Toxins in Food and Feed CXS 193-1995. Amended in 2019. Retrieved from http://www.fao.org/fao-who-codexalimentarius/committees/committee/related-standards/en/?committee=CCCF.

IBGE, Instituto Brasileiro de Geografia e Estatística (IBGE). (2011). Pesquisa de Orçamentos Familiares 2008-2009: Tabela de composição nutricional para os alimentos consumidos no Brasil. Rio de Janeiro: IBGE.

IBGE, Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de orçamentos familiares 2008-2009. Rio de Janeiro: IBGE; 2010. Retrieved from http://www.ibge. gov.br/home/estatistica/populacao/condicaodevida/ pof/2008_2009/POFpublicacao.pdf

INMETRO, Instituto Nacional de Metrologia, Qualidade e Tecnologia. Orientação Sobre Validação de Métodos Analíticos. 2016. Retrieved from http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_05.pdf.

IOMC (Inter-Organisation Programme for the Sound Management of Chemicals), 2008. Guidance for identifying populations at risk from mercury exposure. UNEP / WHO, Geneva; 2008. Retrieved from <http://www.who.int/foodsafety/publication s/chem/mercuryexposure.pdf.

JECFA (Joint FAO/WHO Expert Committee on Food Additives) (2007). Safety evaluation of certain contaminants in food: Methylmercury. WHO Food Addit. Ser. 58, 269-315.

Kim, S-J., Lee, H-K., Badejo, A. C., Lee, W.-C., & Moon, H.-B., (2016). Species-specific accumulation of methyl and total mercury in sharks from offshore and coastal waters of Korea. Mar. Pollut. Bull. 102, 210-215.

Kubitza, F., (2015). Aquicultura no Brasil: Principais espécies, áreas de cultivo, rações, fatores limitantes e desafios. Panor. Aquic., 150.

Lacerda, L. D., Costa, B. G. B. C., Lopes, D. N., Oliveira, K., Bezerra, M. F., Bastos, W. R. (2014). Mercury in indigenous, introduced and farmed fish from the Semiarid Region of the Jaguaribe River Basin, NE Brazil. Bull. Environ. Contam. Toxicol. 93, 31-35.

Lacerda, L. D., Goyanna, F., Bezerra, M. F., & Silva, G. B. (2017). Mercury concentrations in tuna (Thunnus albacares and Thunnus obesus) from the Brazilian Equatorial Atlantic Ocean. Bull Environ Contam. Toxicol., 98, 149-155.

McKinney, M. A., Dean, K., Hussey, N. E., Cliff, G., Wintner, S. P., Dudley, S. F. J., Zungu, M. P., & Fisk, A. T., (2016). Global versus local causes and health implications of high mercury concentrations in sharks from the east coast of South Africa. Sci. Total Environ. 541, 176-183.

Myers, G. J., Davidson, P. W., Watson, G. E., Wijngaarden, E. V., Thurston, S. W., Strain, J. J. Conrad, F. S., & Bovetd, P. (2015). Methylmercury exposure and developmental neurotoxicity. Bull World Health Organ; 93, 132A–132B.

Ralston, N. V. C., Kaneko, J. J., & Raymond, L. J. (2019). Selenium health benefit values provide a reliable index of seafood benefits vs. risks. Journal of Trace Elements in Medicine and Biology, 55, 50-57.

Scherr, C., Gagliardi, A. C. M., Miname, M. H., & Santos, R. D. (2014). Concentração de ácidos graxos e colesterol de peixes habitualmente consumidos no brasil. Arquivos Brasileiros de Cardiologia.

Scorvo Filho, J. D. (2014). Panga “Made in Brasil”! Além de importar o país também já cria o peixe vietnamita. Panor. Aquic., 145.

Sheehan, M. C., Burke, T. A., Navas-Acien, A., Breysse, P. N., Mc Gready, J., Fox, M. A. (2014). Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull world health Organ; 92(11):254-269.

Silva, S. F., & Lima, M. O., (2020). Mercury in fish marketed in the Amazon Triple Frontier and Health Risk Assessment. Chemosph. 248. 125989.

Sirisha, A., Menon, A., & Parikh, S. (2017). Role of omega 3 fatty acids on pregnancy outcome. International journal of reproduction, contraception, obstetrics and gynecology. 6(12):5396-5400.

Soares, J. M., Gomes, J. M., Anjos, M. R., Silveira, J. N., Custódio, F. B., Gloria, M. B. A., (2018). Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations. Food Res. Int. 109, 537-543.

Spiller, H. A. (2018). Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clinical Toxicology, 56, 313-326.

Taylor, C. M., Golding, J., & Emond, A. M. (2016). Mercury levels and fish consumption in pregnancy: Risks and benefits for birth outcomes in a prospective observational birth cohort. International Journal of Hygiene and Environmental Health. 219, 513-520.

Terrazas-López, R., Arreola-Mendozal, L., Galván-Magaña, F., Sujitha, S. B., & Jonathan, M. P., (2019). Understanding the antagonism of Hg and Se in two shark species from Baja California South, México. Sci. Total Environ. 650, 202-209.

U.S. Food & Drug Administration. Eating fish: What pregnant women and parents should know. 2017. Retrieved from https://www.fda.gov/downloads/food/foodborneil lnesscontaminants/metals/ucm537120.pdf

Valladão, G. M. R., Gallani, S. U., & Pilarski, F., (2018). South American fish for continental aquaculture. Reviews in Aquaculture 10, 351–369.

Watanabe, N., Tayama, M., Inouye, M., & Yasutake, A., (2012). Distribution and chemical form of mercury in commercial fish tissues. J. Toxicol. Sci. 37, 853-861.

Yoshino, K., Mori, K., Kanaya, G., Kojima, S., Henmi, Y., Matsuyama, A., & Yamamoto, M., (2020). Food sources are more important than biomagnification on mercury bioaccumulation in marine fishes. Environ. Pollut. 262, 32146359.

Published

13/08/2020

How to Cite

COSTA, Ághata de F.; CUSTÓDIO, F. B.; SILVA, N. de O. C. e; LABANCA, R. A. Mercury in fish commercialized in Minas Gerais and possible risks associated with its consumption. Research, Society and Development, [S. l.], v. 9, n. 9, p. e105996881, 2020. DOI: 10.33448/rsd-v9i9.6881. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6881. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences