Screening of essential oils against Lecanicillium fungicola

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7098

Keywords:

Dry bubble disease; Agaricus bisporus; Mushroom; Antifungal activity.

Abstract

The fungus Lecanicillium fungicola is the causative agent of dry bubble disease in white button mushroom (Agaricus bisporus), being responsible for economic losses. This pathogen causes spots and deformities in the mushrooms, making them unmarketable. Its control can be done with the use of fungicides, in addition to hygiene measures. However, in Brazil there is no approved pesticides for mushroom cultivation, which prevents its legal use. Because of this, and the need to avoid the use of pesticides, natural alternatives have been sought for the control of pests and diseases. Essential oils have proven antimicrobial action in several studies and, therefore, can be a good alternative for the control of L. fungicola in Brazil. Thus, the objective of this work was to evaluate the antifungal action of different essential oils and major compounds on the mycelial growth of L. fungicola. Therefore, 13 essential oils and nine major compounds were tested in vitro in order to evaluate the mycelial growth of the fungus. The medium diffusion method was used at 1 and 0,1% concentrations. Some oils and major components showed only partial inhibition, which varied from 62 to 97%, depending on the concentration (1 or 0.1%). However, most of them showed 100% inhibition of fungal growth in the two doses tested. Therefore, in vitro tests demonstrated a great potential of these compounds as agents of control of L. fungicola in the cultivation of A. bisporus.

Author Biographies

Lundoi Tobias Lee, Universidade Federal de Lavras

Licenciada em Ciências Biológicas - UFRJ
Mestre em Tecnologia Ambiental - UFF
Doutoranda em Microbiologia Agrícola - UFLA

Lívia Martinez Abreu Soares Costa, Universidade Federal de Lavras

Engenheira Agrônoma (2004) pela Universidade Federal de Lavras; Mestrado (2007) e Doutorado(2011) em Ciência dos Alimentos pela UFLA (Lavras-MG) ambos em química dos alimentos na área de resíduo agroindustrial e utilização de microrganismos. Pós-Doutorado em Microbiologia Agrícola na área de genética de microrganismos e cogumelos (2013-2017/2018-2020). 

Tatiana Silveira Junqueira de Moraes, Universidade Federal de Lavras

Graduada em Ciências Biológicas, concluiu Mestrado em Microbiologia Agrícola, ambos na Universidade Federal de Lavras - UFLA. Atualmente cursa o Doutorado na mesma área e na mesma Instituição.

Cibelli Paula de Castro, Universidade Federal de Lavras

Zootecnista, Mestre e Doutoranda em Microbiologia Agrícola pela Universidade Federal de Lavras.

Lucas de Camargo Souza, Universidade Federal de Lavras

Biólogo, mestrando em Microbiologia Agrícola pela Universidade Federal de Lavras.

Roberta Hilsdorf Piccoli, Universidade Federal de Lavras

Mestrado em Microbiologia Agrícola pela Universidade Federal de Viçosa (1996) e doutorado em Ciência e Tecnologia de Alimentos pela Universidade Federal de Viçosa (1999). Atualmente é professor associado da Universidade Federal de Lavras.

Eustáquio Souza Dias, Universidade Federal de Lavras

Possui graduação em Agronomia pela Universidade Federal do Espírito Santo (1987), mestrado em Microbiologia Agrícola pela Universidade Federal de Viçosa (1991) e doutorado em Genética e Melhoramento pela Universidade Federal de Viçosa (1997). Atualmente é professor Titular da Universidade Federal de Lavras.

References

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46(2), 446–475. https://doi.org/10.1016/j.fct.2007.09.106

Berendsen, R. L., Baars, J. J. P., Kalkhove, S. I. C., Lugones, L. G., WöSten, H. A. B., & Bakker, P. A. H. M. (2010). Lecanicillium fungicola: Causal agent of dry bubble disease in white-button mushroom. Molecular Plant Pathology, 11(5), 585–595. https://doi.org/10.1111/j.1364-3703.2010.00627.x

Billerbeck, V. G., Roques, C. G., Bessière, J. M., Fonvieille, J. L., & Dargent, R. (2001). Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger. Canadian Journal of Microbiology, 47(1), 9–17. https://doi.org/10.1139/cjm-47-1-9

Chao, S. C., Young, D. G., & Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, 12(5), 639–649. https://doi.org/10.1080/10412905.2000.9712177

Císarová, M., Tančinová, D., Medo, J., & Kačániová, M. (2016). The in vitro effect of selected essential oils on the growth and mycotoxin production of Aspergillus species. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 51(10), 668–674. https://doi.org/10.1080/03601234.2016.1191887

Donato, R., Sacco, C., Pini, G., & Bilia, A. R. (2020). Antifungal activity of different essential oils against Malassezia pathogenic species. In Journal of Ethnopharmacology (Vol. 249, p. 112376). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2019.112376

Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109–112. https://doi.org/10.1590/S1413-70542014000200001

Geösel, A., Szabó, A., Akan, O., & Szarvas, J. (2014). Effect of Essential Oils on Mycopathogens of Agaricus. 530–535.

Gogoi, P., Baruah, P., & Nath, S. C. (1997). Antifungal activity of the essential oil of Litsea cubeba pers. Journal of Essential Oil Research, 9(2), 213–215. https://doi.org/10.1080/10412905.1997.9699462

Hamzah, M. H., Che Man, H., Abidin, Z. Z., & Jamaludin, H. (2014). Comparison of citronella oil extraction methods from Cymbopogon nardus grass by ohmic-heated hydro-distillation, hydro-distillation, and steam distillation. BioResources, 9(1), 256–272. https://doi.org/10.15376/biores.9.1.256-272

Horváth, G., Török Jenei, J., Vágvölgyi, C., Böszörményi, A., & Krisch, J. (2016). Effects of essential oil combinations on pathogenic yeasts and moulds. Acta Biologica Hungarica, 67(2), 205–214. https://doi.org/10.1556/018.67.2016.2.8

Jirovetz, L., Buchbauer, G., Stoilova, I., Stoyanova, A., Krastanov, A., & Schmidt, E. (2006). Chemical Composition and Antioxidant Properties of Clove Leaf Essential Oil. Journal of Agricultural and Food Chemistry, 54(17), 6303–6307. https://doi.org/10.1021/jf060608c

Lee, L. T., Garcia, S. A., Martinazzo, A. P., & Teodoro, C. E. D. S. (2020). Fungitoxidade e composição química do óleo essencial de alecrim (Rosmarinus officinalis) sobre o Aspergillus flavus. Research, Society and Development, 9(8), 202985628. https://doi.org/10.33448/rsd-v9i8.5628

Nakamura, M., Endo, E., de Sousa, J. P., Callejon, D., Ueda-Nakamura, T., Dias Filho, B., de Freitas, O., Nakamura, C., & Lopes, N. (2016). Copaiba Oil and Its Constituent Copalic Acid as Chemotherapeutic Agents against Dermatophytes. Journal of the Brazilian Chemical Society, 28(8), 1377–1383. https://doi.org/10.21577/0103-5053.20160309

Pandey, A. K., Rai, M. K., & Acharya, D. (2003). Chemical Composition and Antimycotic Activity of the Essential Oils of Corn Mint (Mentha arvensis) and Lemon Grass (Cymbopogon flexuosus) Against Human Pathogenic Fungi. Pharmaceutical Biology, 41(6), 421–425. https://doi.org/10.1076/phbi.41.6.421.17825

Santana Nunes, J., Rocha de Brito, M., Cunha Zied, D., Aparecida das Graças Leite, E., Souza Dias, E., & Alves, E. (2017). Evaluation of the infection process by Lecanicillium fungicola in Agaricus bisporus by scanning electron microscopy. Revista Iberoamericana de Micología, 34(1), 36–42. https://doi.org/10.1016/j.riam.2016.04.006

Santos, T. L. dos, Belan, L. L., Zied, D. C., Dias, E. S., Alves, E., Santos, T. L. dos, Belan, L. L., Zied, D. C., Dias, E. S., & Alves, E. (2017). Essential oils in the control of dry bubble disease in white button mushroom. Ciência Rural, 47(5). https://doi.org/10.1590/0103-8478cr20160780

Sharma, A., Rajendran, S., Srivastava, A., Sharma, S., & Kundu, B. (2017). Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering, 123(3), 308–313. https://doi.org/10.1016/j.jbiosc.2016.09.011

Si, L., Chen, Y., Han, X., Zhan, Z., Tian, S., Cui, Q., & Wang, Y. (2012). Chemical composition of essential oils of Litsea cubeba harvested from its distribution areas in China. Molecules, 17(6), 7057–7066. https://doi.org/10.3390/molecules17067057

Simic, A., Rančic, A., Sokovic, M. D., Ristic, M., Grujic-Jovanovic, S., Vukojevic, J., & Marin, P. D. (2008). Essential oil composition of Cymbopogon winterianus and Carum carvi and their antimicrobial activities. Pharmaceutical Biology, 46(6), 437–441. https://doi.org/10.1080/13880200802055917

Thielmann, J., & Muranyi, P. (2019). Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene . Journal of Essential Oil Research, 31(5), 361–378. https://doi.org/10.1080/10412905.2019.1611671

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. PCR Protocols, 1, 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

Yamaguchi, M. U., Garcia, F. P., Cortez, D. A. G., Ueda-Nakamura, T., Filho, B. P. D., & Nakamura, C. V. (2011). Antifungal effects of Ellagitannin isolated from leaves of Ocotea odorifera (Lauraceae). Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 99(3), 507–514. https://doi.org/10.1007/s10482-010-9516-3

Zied, D. C., Nunes, J. S., Nicolini, V. F., Gimenez, A. P., Rinker, D. L., & Dias, E. S. (2015). Tolerance to Lecanicillium fungicola and yield of Agaricus bisporus strains used in Brazil. Scientia Horticulturae, 190, 117–122. https://doi.org/10.1016/j.scienta.2015.04.021

Published

17/08/2020

How to Cite

LEE, L. T.; COSTA, L. M. A. S.; MORAES, T. S. J. de .; CASTRO, C. P. de .; SOUZA, L. de C. .; PICCOLI, R. H. .; DIAS, E. S. . Screening of essential oils against Lecanicillium fungicola. Research, Society and Development, [S. l.], v. 9, n. 9, p. e269997098, 2020. DOI: 10.33448/rsd-v9i9.7098. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7098. Acesso em: 17 nov. 2024.

Issue

Section

Exact and Earth Sciences