Covid-19: Infectivity study in the Municipality of Garanhuns - PE




Effective reproduction number; Covid-19; Incidence; Garanhuns; Brazil.


Covid-19 is not a local problem but a serious challenge to the public health, affecting different continents. It has been the subject of government actions from different spheres in the municipality of Garanhuns. This study aimed to analyze the infectivity rate of Covid-19, in Garanhuns, through the effective reproductive number of the new coronavirus. The effective reproductive number is often used in epidemiological models. For that, it was necessary to use an incidence graph and a parametric distribution that represented the probability of successive cases in the elapsed time. To ensure consistency of the estimate, use the ones for the mean and standard deviation of the distribution. We simulate the parameters according to a more recent literature on the subject, using more than one sample for projection in our analyzes. It emphasizes that we adapt the parameters according to the reality that an average infected patient takes to seek hospital care after the first symptoms of Covid-19. The results demonstrate, even a data analysis, as non-reduced measures, effectively, an infection and a value that allows indicating that the disease is no longer spreading. The study includes understanding the evolution of the pandemic and the effectiveness of public measures.


A. Cori (2019), Epiestim: Estimate time varying reproduction numbers from epidemic curves, CRAN, R package version 2.2-1.

Aghaali, M., Kolifarhood, G., Nikbakht, R., Saadati, H. M., & Hashemi Nazari, S. S. (2020). Estimation of the serial interval and basic reproduction number of COVID-19 in Qom, Iran, and three other countries: A data-driven analysis in the early phase of the outbreak. Transboundary and emerging diseases, 10.1111/tbed.13656. Advance online publication.

Ainslie, K. E. C.; Walters, C. E.; Fu, H.; Bhatia, S.; Wang, H.; Xi, X.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Boyd, O.; Cattarino, L.; Ciavarella, C.; Cucunuba, Z.; Cuomo-dannenburg, G.; Dighe, A.; Dorigatti, I.; Van Elsland, S. L.; Fitzjohn, R.; Gaythorpe, K.; Ghani, A. C.; Green, W.; Hamlet, A.; Hinsley, W.; Imai, N.; Jorgensen, D.; Knock, E.; Laydon, D.; Nedjati-gilani, G.; Okell, L. C.; Siveroni, I.; Thompson, H. A.; Juliette, H.; Unwin, T.; Verity, R.; Vollmer, M.; Walker, P. G. T.; Wang, Y.; Watson, O. J.; Whittaker, C.; Winskill, P.; Donnelly, C. A.; Ferguson, N. M.; Riley, S. (2020). Open Peer Review Evidence Of Initial Success For China Exiting Covid-19 social distancing policy after achieving containment, Wellcome Open Res. 2020;5:81.

Anderson, R. M; May, R. M., (1991). Infectious Disease of Humans. Nova Iorque: Oxford University Press.

Andersson, H.; Britton, T., (2000). Stochastic Epidemic Models and their Statistical Analysis. Nova Iorque: Springer Verlag.

Durbin, J.; Koopman, S. J. (2012). Análise de séries temporais por métodos de espaço de estados. Oxford University Press.

Gupta, M.; Mohanta, S. S.; Rao, A.; Parameswaran, G. G.; Agarwal, M.; Arora, M.; Mazumder, A.; Lohiya, A.; Behera, P.; Bansal, A.; Kumar, R.; Meena, V. P.; Tiwari, P.; Mohan, A.; Bhatnagar, S. (2020). Transmission dynamics of the COVID-19 epidemic in India and modelling optimal lockdown exit strategies. MedRxiv. p. 2020.05.13.20096826. doi:

Lekone, P. E.; Finkenstädt, B. F (2006). Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics, v. 62, p. 1170-1177.doi:

Lotka A. J. (1939). Th´eorie analytique des associations biologiques, 2e partie. Hermann, Paris.

Nishiura, H., Linton, N. M., & Akhmetzhanov, A. R. (2020). Serial interval of novel coronavirus (COVID-19) infections. International journal of infectious diseases.

Organização Pan-Americana da Saúde [OPAS] (2020). Folha informativa – COVID-19 (doença causada pelo novo coronavírus). Recuperado de:, Em: 19 de julho de 2020.

Prado, M. Bastos L, Batista A, Antunes B, Baião F, Maçaira P, Hamacher S, Bozza F., (2020). Análise de subnotificação do número de casos confirmados da COVID-19 no Brasil. 2020. Recuperado de: <>. Em: 07 de julho de 2020.

Wallinga, J., & Teunis, P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American journal of epidemiology, 160(6), 509–516.

Samperi, R. H.; Collado, C. F.; Lucio, M. del P. B, (2013). Metodologia Científica. 5. ed. Porto Alegre: Penso. 624 p.

Secretaria de Saúde Garanhuns. Boletins Epidemiológicos (2020). Recuperado de: Em: 18 de julho de 2020.

Silva A.W.C., Cunha A.A., Alves G.C., Corona R.A., Dias C.A.G. M., Nassiri R., (2020) Caracterização clínica e epidemiologia de 1560 casos de COVID-19 em Macapá/AP, extremo norte do Brasil. Research, Society and Development, v. 9, n. 8, p. e150985499.



How to Cite

BARROS, D. M. .; ALVES, D. A. N. da S. .; NASCIMENTO, G. I. L. A.; FALCÃO, R. E. A. .; CUNHA FILHO, M. .; LEITE, R. M. B. . Covid-19: Infectivity study in the Municipality of Garanhuns - PE. Research, Society and Development, [S. l.], v. 9, n. 9, p. e298997176, 2020. DOI: 10.33448/rsd-v9i9.7176. Disponível em: Acesso em: 23 may. 2024.



Exact and Earth Sciences