Wearable optical device for the visually impaired in the classroom
DOI:
https://doi.org/10.33448/rsd-v9i9.7623Keywords:
Low vision; Rehabilitation; Wearable devices; Smartphone application; Medical device.Abstract
Low vision is characterized by visual impairment even after treatment or medical correction, causing a number of impacts on the life of individuals. Thus, the use of assistive devices is essential to mitigate the effects of visual loss. Most of the different optical devices currently available are costly, which hinders their acquisition. The present study aimed at creating a wearable optical device for low vision, using low-cost 3D impression technologies. This is a descriptive experimental study, divided into 7 stages: ideation and creation, 3D modeling, 3D printing of structural parts, development of an original application, assembly, tests and calibration. During the first 3 stages, we created a head support onto which a smartphone could be attached as well as an image transmission and capturing module. Next, an application was developed to send the module images to the smartphone. Finally, the ensemble was calibrated with the help of a volunteer with low vision. A functional wearable optical device was developed in the form of an MVP (minimum viable product), which underwent tests and a number of functionality adjustments. The study resulted in the creation of an MVP that will be perfected through industrial modifications. However, the authors of this study are in the process of validating the device for use in subjects with low vision.
References
Bowers, A. R. (2000). Eye movements and reading with plus-lens magnifiers. Optometry and vision science: official publication of the American Academy of Optometry, 77(1), 25–33. https://doi.org/10.1097/00006324-200001000-00010
Bray, N., Brand, A., Taylor, J., Hoare, Z., Dickinson, C., & Edwards, R. T. (2017). Portable electronic vision enhancement systems in comparison with optical magnifiers for near vision activities: an economic evaluation alongside a randomized crossover trial. Acta ophthalmologica, 95(5), e415–e423. https://doi.org/10.1111/aos.13255
Crossland, M. D., Silva, R. S., & Macedo, A. F. (2014). Smartphone, tablet computer and e-reader use by people with vision impairment. Ophthalmic & physiological optics: the journal of the British College of Ophthalmic Opticians (Optometrists), 34(5), 552–557. https://doi.org/10.1111/opo.12136
Ehrlich, J. R., Ojeda, L. V., Wicker, D., Day, S., Howson, A., Lakshminarayanan, V., & Moroi, S. E. (2017). Head-Mounted Display Technology for Low-Vision Rehabilitation and Vision Enhancement. American journal of ophthalmology, 176, 26–32. https://doi.org/10.1016/j.ajo.2016.12.021
Fred Hollows Foundation. (2013). The price of sight: The global cost of eliminating avoidable blindness (pp. 1-63). Camberra. Retrieved from https://d-net.idf.org/en/library/288-the-price-of-sight-the-global-cost-of-eliminating-avoidable-blindness.html
Göken, M., Basoglu, N., & Dabic, M. (2016). 2016 Portland International Conference on Management of Engineering and Technology (PICMET). In 2016 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 3175-3184). Portland. Retrieved from https://ieeexplore.ieee.org/document/7806835
Kloevekorn-Fischer, U., Kloevekorn-Norgall, K., Duncker, G., & Grünauer-Kloevekorn, C. (2009). Ergebnisse der optischen Rehabilitation mit vergrössernden Sehhilfen bei Patienten mit irreversibel visuslimitierenden Erkrankungen [Results of low-vision rehabilitation in vision impaired patients]. Klinische Monatsblatter fur Augenheilkunde, 226(5), 428–431. https://doi.org/10.1055/s-0028-1109194
Lane, J., Rohan, E., Sabeti, F., Essex, R. W., Maddess, T., Dawel, A., Robbins, R. A., Barnes, N., He, X., & McKone, E. (2018). Impacts of impaired face perception on social interactions and quality of life in age-related macular degeneration: A qualitative study and new community resources. PloS one, 13(12), e0209218. https://doi.org/10.1371/journal.pone.0209218
Malta, D. C., Stopa, S. R., Canuto, R., Gomes, N. L., Mendes, V. L., Goulart, B. N., & Moura, L. (2016). Self-reported prevalence of disability in Brazil, according to the National Health Survey, 2013. Prevalência autorreferida de deficiência no Brasil, segundo a Pesquisa Nacional de Saúde, 2013. Ciencia & saude coletiva, 21(10), 3253–3264. https://doi.org/10.1590/1413-812320152110.17512016
Markowitz, S. N. (2016). State-of-the-art: low vision rehabilitation. Canadian journal of ophthalmology. Journal canadien d'ophtalmologie, 51(2), 59–66. https://doi.org/10.1016/j.jcjo.2015.11.002
Mednick, Z., Jaidka, A., Nesdole, R., & Bona, M. (2017). Assessing the iPad as a tool for low-vision rehabilitation. Canadian journal of ophthalmology. Journal canadien d'ophtalmologie, 52(1), 13–19. https://doi.org/10.1016/j.jcjo.2016.05.015
Moisseiev, E., & Mannis, M. J. (2016). Evaluation of a Portable Artificial Vision Device Among Patients With Low Vision. JAMA ophthalmology, 134(7), 748–752. https://doi.org/10.1001/jamaophthalmol.2016.1000
OrCam - Ajude as pessoas que são cegas ou parcialmente cegas. OrCam. (2020). Retrieved 31 August 2020, from https://www.orcam.com/pt/.
Paiva, Vera Menezes de O. (2010). Ambientes virtuais de aprendizagem: implicações epistemológicas. Educação em Revista, 26(3), 353-370. https://doi.org/10.1590/S0102-46982010000300018
Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. The British journal of ophthalmology, 96(5), 614–618. https://doi.org/10.1136/bjophthalmol-2011-300539
Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Este e-book é gratuito
Rovner, B. W., Casten, R. J., Hegel, M. T., Massof, R. W., Leiby, B. E., Ho, A. C., & Tasman, W. S. (2014). Low vision depression prevention trial in age-related macular degeneration: a randomized clinical trial. Ophthalmology, 121(11), 2204–2211. https://doi.org/10.1016/j.ophtha.2014.05.002
Smallfield, S., Berger, S., Hillman, B., Saltzgaber, P., Giger, J., & Kaldenberg, J. (2017). Living with Low Vision: Strategies Supporting Daily Activity. Occupational therapy in health care, 31(4), 312–328. https://doi.org/10.1080/07380577.2017.1384969
Taylor, J. J., Bambrick, R., Brand, A., Bray, N., Dutton, M., Harper, R. A., Hoare, Z., Ryan, B., Edwards, R. T., Waterman, H., & Dickinson, C. (2017). Effectiveness of portable electronic and optical magnifiers for near vision activities in low vision: a randomised crossover trial. Ophthalmic & physiological optics: the journal of the British College of Ophthalmic Opticians (Optometrists), 37(4), 370–384. https://doi.org/10.1111/opo.12379
Thomas, R., Barker, L., Rubin, G., & Dahlmann-Noor, A. (2015). Assistive technology for children and young people with low vision. The Cochrane database of systematic reviews, (6), CD011350. https://doi.org/10.1002/14651858.CD011350.pub2
Trulaske, J. and M. Meyer, D., 1997. Hand-Held Reading Device For The Visually Impaired. US5633674A.
Virgili, G., Acosta, R., Bentley, S. A., Giacomelli, G., Allcock, C., & Evans, J. R. (2018). Reading aids for adults with low vision. The Cochrane database of systematic reviews, 4(4), CD003303. https://doi.org/10.1002/14651858.CD003303.pub4
Wittich, W., Jarry, J., Morrice, E., & Johnson, A. (2018). Effectiveness of the Apple iPad as a Spot-reading Magnifier. Optometry and vision science: official publication of the American Academy of Optometry, 95(9), 704–710. https://doi.org/10.1097/OPX.0000000000001269
Wolffsohn, J. S., & Peterson, R. C. (2003). A review of current knowledge on Electronic Vision Enhancement Systems for the visually impaired. Ophthalmic & physiological optics: the journal of the British College of Ophthalmic Opticians (Optometrists), 23(1), 35–42. https://doi.org/10.1046/j.1475-1313.2003.00087.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 André Fiel Borges; Judson Ferreira dos Santos Junior; Leticia Oliveira Sousa; Renan Cavalcante Souza; Rafael Cavalcante Duarte Galvão; Vinícius Campos Tinoco Ribeiro; Vitor Rodrigues Greati; Ivanovitch Medeiros Dantas da Silva; Francisco Irochima Pinheiro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.