Influence of magnetic stirring and particles size of mango peel flour in an acid hydrolysis process

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7697

Keywords:

Bioethanol; Lignocellulosic waste; Reuse; Spectrophotometry; Cellulosic etanol.

Abstract

In view of the current oil crises, resulting from the increase in the prices of barrels, in addition to the possibility of depletion in the near future of this raw material, comes up need for a sustainable policy in relation to the sources of energy generation. In this sense, bioethanol generated from agro-industrial residues and fruits, appears as an alternative. Mango (Manguifera indica), in the Tommy Atkins variety, is the most produced and consumed in the country. This consumption and processing generates a large amount of organic waste. The mango peel is classified as a lignocellulosic raw material, with interesting amounts of cellulose and hemicellulose, essential factors for the production of bioethanol, a sustainable fuel. One of the ways to obtain this biofuel is through the acid hydrolysis of this raw material that provides fermentable sugars. However, there are factors that influence the acid hydrolysis process, providing or not a better performance in the formation of these sugars. Thus, this work aimed to analyze the potential of mango peel flour as a raw material for the production of bioethanol, carrying out the process of acid hydrolysis. As a way to achieve this goal, the influence of the particle size and the agitation applied to the particles of this material was evaluated. It was observed from the analysis, that the influence of the magnetic stirring favored a higher yield in relation to the formation of sugars, which are the basis for the production of bioethanol.

Author Biographies

Breno Eduardo Carlos, Universidade Federal Rural do Semi-Árido

Estudante de Graduação do Curso Interdisciplinar em Ciência e Tecnologia

Karina Estrela Egídio , Universidade Federal Rural do Semi-Árido

Estudante de Graduação do Curso Interdisciplinar em Ciência e Tecnologia

Marcelo Nascimento de Morais Oliveira, Universidade Federal Rural do Semi-Árido

Graduado em Licenciatura em Ciências Exatas na Universidade Estadual da Paraíba com Habilitação Plena em Química com Especialização em Metodologia do Ensino de Biologia e Química. Técnico em Química do Departamento de Ciências Exatas e Naturais do Centro Multidisciplinar de Pau dos Ferros - UFERSA. 

Ricardo Paulo Fonseca Melo, Universidade Federal Rural do Semi-Árido

Graduado em Engenharia Química pela Universidade Federal do Rio Grande do Norte com Doutorado em Engenharia Química. Docente do Departamento de Ciências Exatas e Naturais do Centro Multidisciplinar de Pau dos Ferros. 

Cláwsio Rogério Cruz de Sousa, Universidade Federal Rural do Semi-Árido

Graduação em Engenharia de Materiais pela Universidade Federal do Rio Grande do Norte com doutorado em Ciência e Engenharia de Materiais pela UFRN. Docente do Departamento de Engenharias e Tecnologia do Centro Multidisciplinar de Pau dos Ferros - UFERSA.

Shirlene Kelly Santos Carmo, Universidade Federal Rural do Semi-Árido

Graduação em Engenharia Química pela Universidade Federal de Campina Grande com Doutorado em Engenharia Química. Docente do Departamento de Ciências Exatas e Naturais do Centro Multidisciplinar de Pau dos Ferros - UFERSA. 

References

Associação Brasileira de Normas Técnicas [NBR 7211]. (2005). Agregados para concreto: especificação. Rio de Janeiro, RJ: ABNT

Atkins, P. W. (2008). Físico-Química. São Paulo: Editora LTC.

Barros, L. P. R. C. (2017). Obtenção de nanocelulose por hidrólise ácida e enzimática de fibras de algodão de resíduo de tecido tingido com corante índigo. Tese de doutorado, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil.

Cardoso, A. L. de C. (2017). Produção de celulases pelo FSDE 16 e hidrólise enzimática do bagaço da cana-de-açúcar. Trabalho de conclusão de curso, Universidade Federal da Paraíba, João Pessoa, PB, Brasil.

Cordeiro, E. M. S. (2013). Biocompósitos poliméricos obtidos a partir da fração lignocelulósica e amilácea do caroço de manga (Mangifera indica), Tommy Arkins. Dissertação de mestrado, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil.

Henriques, H. J. C. (2012). Viabilidade do uso de bioetanol como combustível alternativo. Dissertação de mestrado, Universidade de Aveiro, Portugal.

Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol (199), 103-112.

Marincek, A. M. (2017). Produção de filmes de triacetato de celulose a partir da celulose extraída de fonte lignocelulósica alternativa. Trabalho de conclusão de curso, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil.

Megawati, W. B. S., Sulistyo, H., & Hidayat, M. (2015). Sulfuric acid hydrolysis of various lignocellulosic materials and its mixture in ethanol production. Biofuels (6), 331-340.

Oliveira, D. S., Furstenberger, C. B., Boava, M. S., Turcatel, G. J. A., Maia, G. A. R., & Rodrigues, P. R. P. (2017). Estudo da hidrólise ácida da Cyperus esculentus para produção de etanol. Revista Virtual de Química, 9, 2427-2441.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15 824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pereira, N. R. L., Anjos, F. E., & Magnago, R. F. (2019). Resíduos lignocelulósicos da bananicultura: uma revisão sobre os processos químicos de extração da celulose. Revista Virtual de Química, 11 (4), 1165-1179.

Quintero-Ramirez, R. (2014). Hydrolysis of lignocellulosic biomass (Cap. 13, p. 717-732). São Paulo: Editora Edgard Blücher.

Santos, F. A., Queiróz, J. H. de, Colodette, J. L., Fernandes, S. A., Guimarães, V. M., & Rezende, S. T. (2012). Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova, 35, 1004-1010.

Silva, R. de A. (2014). Efeito do pré-tratamento ácido e básico na hidrólise enzimática do bagaço de acerola. Dissertação de mestrado, Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Whitfield, M. B., Chinn, M. S., & Veal, M. W. (2016). Improvement of acid hydrolysis procedures for the composition analysis of herbaceous biomass. Energy&fuels.

Published

03/09/2020

How to Cite

CARLOS, B. E.; EGÍDIO , K. E. .; OLIVEIRA, M. N. de M. .; MELO, R. P. F.; SOUSA, C. R. C. de .; CARMO, S. K. S. . Influence of magnetic stirring and particles size of mango peel flour in an acid hydrolysis process. Research, Society and Development, [S. l.], v. 9, n. 9, p. e685997697, 2020. DOI: 10.33448/rsd-v9i9.7697. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7697. Acesso em: 8 jan. 2025.

Issue

Section

Engineerings