Functional and technological potential of arabica coffee oils




Arabica coffee; Fluids; Industry; Healthiness; Fatty acid profile.


The purpose of the study was to evaluate the antioxidant activity, rheological behaviour, oxidative stability, and antibacterial potential of coffee oils (Coffea arabica L.). The extraction process took place from green and roasted beans, by cold pressing, and filtration via filtering card. The experimental design consisted of five treatments: R100 (100% roasted oil); R75G25 (75% roasted oil and 25% green oil); R50G50 (50% roasted oil and 50% green oil); R25G75 (25% roasted oil and 75% green oil), and G100 (100% green oil). The treatment R75G25 showed a higher content of total phenolic compounds and higher DPPH and ABTS•+ anti-radical efficiency. Regarding rheological behaviour, all coffee oils can be characterized as Newtonian fluids because the shear stress and strain rate varied linearly, with the line intersecting at zero. The treatments R75G25 and R25G75 showed a longer oxidation induction time, in the oxidative stability analysis, in addition to antibacterial activity having been verified for all oil samples. Besides that, the investigated green and roasted coffee oils are sources of fatty acids, including from the omega 3, 6, and 9 classes. Therefore, the use of arabica coffee oil mixtures as natural preservatives in food can be considered a promising alternative for the partial replacement of chemical additives in food matrices and in cosmetic formulations allowing the development of innovative products.

Author Biography

Clara Mariana Lima, /Universidade Federal de Santa Catarina

Possui graduação em Engenharia de Alimentos pelo Instituto Federal do Norte de Minas Gerais - IFNMG (2016) e mestrado em Ciência dos Alimentos pela Universidade Federal de Lavras - UFLA (2019). Realiza doutoramento em Ciência dos Alimentos pela Universidade Federal de Santa Catarina - UFSC. Constitui membro efetivo da Sociedade Brasileira de Toxicologia - SBTox, membro convidado da Hispanic Organization of Toxicologists - HOT/Society of Toxicology - SOT e integra a Rede de Pesquisadores - RdP. Compôs o Conselho Consultivo de Ações de Popularização da Ciência (2018/2019) e o Comité Científico Internacional das Jornadas Chilenas de Salud Pública (2019/2020). Desenvolveu itens em Ciência e Tecnologia de Alimentos pela Universidade Federal de Juiz de Fora - UFJF (2018) e prestou serviços de consultoria industrial (2018).


Ahammed, N., Asirvatham, L. G., & Wongwises, S. (2016). Effect of volume concentration and temperature on viscosity and surface tension of graphene-water nanofluid for heat transfer applications. Journal of Thermal Analysis and Calorimetry, 123(2), 1399–1409.

Aktar, T., & Adal, E. (2019). Determining the Arrhenius kinetics of avocado oil: Oxidative stability under rancimat test conditions. Foods, 8(7), 1–13.

Almeida, A. A. P., Farah, A., Silva, D. A. M., Nunan, E. A., & Glória, M. B. A. (2006). Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. Journal of Agricultural and Food Chemistry, 54(23), 8738–8743.

Antonio, A. G., Moraes, R. S., Perrone, D., Maia, L. C., Santos, K. R. N., Iório, N. L. P., & Farah, A. (2010). Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chemistry, 118(3), 782–788.

AOCS. (2009). Official methods and recommended practices of the American Oil Chemists’ Society. Champaign, IL, USA: AOCS Press.

Araújo, M. A. (2012). Química de Alimentos – Teoria e Prática. Viçosa, MG, Brasil: Editora UFV.

Brunetti, F. (2008). Mecânica dos Fluidos. São Paulo, SP, BR: Pearson Education.

Cavin, C., Holzhaeuser, D., Scharf, G., Constable, A., Huber, W. W., & Schilter, B. (2002). Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food and Chemical Toxicology, 40(8), 1155–1163.

Chen, Z., Bertin, R. & Froldi, G. (2013). EC 50 estimation of antioxidant activity in DPPH Å assay using several statistical programs. Food Chemistry, 138(1), 414–420.

Chew, S. C. (2020). Cold-pressed rapeseed (Brassica napus) oil : Chemistry and functionality. Food Research International, 131, 108997.

Chu, Y.-F. (2012). Coffee: Emerging Health Effects and Disease Prevention. Oxford, UK: Wiley-Blackwell.

Daglia, M., Cuzzoni, T., Dacarrot, C., Farmaceutica, C., Taramelli, V., Farmacologia, I. & Taramelli, V. (1994). Antibacterial Activity of Coffee : Relationship between Biological Activity and Chemical Markers, Journal of Agricultural and Food Chemistry, 18, 2273–2277.

Daglia, M., Papetti, A., Dacarro, C. & Gazzani, G. (1998). Isolation of an antibacterial component from roasted coffee, Journal of Pharmaceutical and Biomedical Analysis, 18, 219–225.

Dogasaki, C., Shindo, T., Furuhata, K. & Fukuyama, M. (2002). Identification of chemical structure of antibacterial components against Legionella pneumophila in a coffee beverage. Journal of the Pharmaceutical Society of Japan, 122(7), 487–494.

EUCAST. (2020). European Committee on Antimicrobial Susceptibility Testing. European Society of Clinical Microbiology and Infectious Diases. Antimicrobial susceptibility testing EUCAST disk diffusion method.

Garrett, R., Schmidt, E. M., Filipe, L., Pereira, P., Kitzberger, C. S. G., Brígida, M., Scholz, S., et al. (2013). Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. LWT - Food Science and Technology, 50(2), 496–502.

Hartman, L. & Lago, R. C. A. (1973). Rapid preparation to fatty acids methyl esters. Laboratory practice, 22(6), 475–476.

Hashempour-baltork, F., Torbati, M., Azadmard-damirchi, S. & Savage, G. P. (2016). Vegetable oil blending : A review of physicochemical , nutritional and health effects. Trends in Food Science & Technology, 57, 52–58.

Heck, R., Saldaña, E., Manuel, J., Pereira, L., Bittencourt, M., José, A., Ragagnin, C., et al. (2019). Hydrogelled emulsion from chia and linseed oils : A promising strategy to produce low-fat burgers with a healthier lipid pro fi le. Meat Science, 156(June), 174–182.

Huber, W. W., Scharf, E. G., Peter, B. G. E. B. & Schulte-hermann, R. J. T. E. R. (2002). The coffee components kahweol and cafestol induce c -glutamylcysteine synthetase , the rate limiting enzyme of chemoprotective glutathione synthesis , in several organs of the rat, 685–694.

Hurtado-Benavides, A., Dorado, D., Sánchez-Camargo, A. D. P. (2016). Study of the fatty acid profile and the aroma composition of oil obtained from roasted Colombian coffee beans by supercritical fluid extraction. The Journal of Supercritical Fluids, 113, 44–52.

Irgens, F. (2014). Rheology and non-newtonian fluids. New York, NY, USA: Springer International Publishing.

Kim, J. M., Cornell, J. A. & Preston, J. F. (1995). Antibacterial Activity of Carvacrol, Citral, and Geraniol against Salmonella typhimurium in Culture Medium and on Fish Cubes, 60(6), 1364–1368.

Kurzrock, T. & Speer, K. (2001). Identification of kahweol fatty acid esters in Arabica coffee by means of LC/MS. Journal of Separation Science, 24(10–11), 843–848.

Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J. & J. Feet, R. (2009). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726–732.

Lago, R. C. A. (2001). Lipídios Em Grãos De Café. Boletim do Centro de Pesquisa de Processamento de Alimentos, 19(2), 319–340.

Larrauri, J. A., Rupérez, P. & Saura-Calixto, F. (1997). Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. Journal of Agricultural and Food Chemistry, 45(4), 1390–1393.

Lee, K. J., Choi, J. H. & Jeong, H. G. (2007). Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food and Chemical Toxicology, 45(11), 2118–2125.

Lee, K. J. & Jeong, H. G. (2007). Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicology Letters, 173(2), 80–87.

Lucas-González, R., Viuda-Martos, M., Pérez Álvarez, J. A. & Fernández-López, J. (2018). Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chemistry, 256, 252–258.

Mba, O. I., Dumont, M. J. & Ngadi, M. (2017). Thermostability and degradation kinetics of tocochromanols and carotenoids in palm oil, canola oil and their blends during deep-fat frying. LWT - Food Science and Technology, 82, 131–138.

Mitschka, P. (1982). Simple conversion of Brookfield R.V.T. readings into viscosity functions. Rheologica Acta, 21(2), 207–209.

De Oliveira, A. C., Valentim, I. B., Goulart, M. O. F., Silva, C. A., Bechara, E. J. H. & Trevisan, M. T. S. (2009). Fontes vegetais naturals de antioxidantes. Quimica Nova, 32(3), 689–702.

Oliveira, P., Henrique, R., Almeida, D., Albertina, N., Oliveira, D., Bostyn, S. & Gonc, C. B. (2014). Enrichment of diterpenes in green coffee oil using supercritical fluid extraction – Characterization and comparison with green coffee oil from pressing. The Journal of Supercritical Fluids, 95, 137–145.

Ordóñez, J. A., Rodíguez, M. I., Álvarez, L. F., Sanz, M. L. G., Miguillón, G. D. G. F., Perales, L. H. & Cortecero, M. D. S. (2007). Tecnologia de Alimentos. Porto Alegre, RS, Brasil: Editora Artmed.

Pokrovskiy, O. I., Prokopchuk, D. I., Kostenko, M. O., Ustinovich, K. B., Parenago, O. O. & Lunin, V. V. (2018). Effect of Pressure on the Efficiency of Supercritical Fluid Extraction of Black Coffee Oil. Russian Journal of Physical Chemistry B, 12(7), 1176–1181.

Prates-Valério, P., Celayeta, J. M. F. & Cren, E. C. (2019). Quality Parameters of Mechanically Extracted Edible Macauba Oils (Acrocomia aculeata) for Potential Food and Alternative Industrial Feedstock Application. European Journal of Lipid Science and Technology, 121(5), 1–8.

Pratt, D. A., Mills, J. H. & Porter, N. A. (2003). Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. Journal of the American Chemical Society, 125(19), 5801–5810.

Ramadan, M. F. & Wahdan, K. M. M. (2012). Blending of corn oil with black cumin (Nigella sativa) and coriander (Coriandrum sativum) seed oils: Impact on functionality, stability and radical scavenging activity. Food Chemistry, 132(2), 873–879.

Rao, M. A. (2014). Rheology of Fluid, Semisolid, and Solid Foods – Principles and Applications. New York, NY, USA: Springer International Publishing.

Rodrigues, N. P. & Bragagnolo, N. (2013). Identification and quantification of bioactive compounds in coffee brews by HPLC-DAD-MSn. Journal of Food Composition and Analysis, 32(2), 105–115.

Romano, R., Santini, A., Le Grottaglie, L., Manzo, N., Visconti, A. & Ritieni, A. (2014). Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. Journal of Food Composition and Analysis, 35(1), 1–9.

Rufino, M. D. S. M., Alves, R. E., De Brito, E. S., de Morais, S. M., Sampaio, C. de G., Pérez-Jiménez, J. & Saura-Calisto, F. D. (2007a). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico, 127. Fortaleza, Brasil: Embrapa Agroindústria Tropical.

Rufino, M. D. S. M., Alves, R. E., De Brito, E. S., de Morais, S. M., Sampaio, C. de G., Pérez-Jiménez, J. & Saura-Calisto, F. D. (2007b). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS.+. Comunicado Técnico, 128. Fortaleza, Brasil: Embrapa Agroindústria Tropical.

Sanla-Ead, N., Jangchud, A., Chonhenchob, V. & Suppakul, P. (2012). Antimicrobial Activity of Cinnamaldehyde and Eugenol and Their Activity after Incorporation into Cellulose‐based Packaging Films. Packaging and Technology and Science, 25, 7–17.

Senger, E., Bohlinger, B., Esgaib, S., Hernández-Cubero, L. C., Montes, J. M. & Becker, K. (2017). Chuta (edible Jatropha curcas L.), the newcomer among underutilized crops: a rich source of vegetable oil and protein for human consumption. European Food Research and Technology, 243(6), 987–997.

Vieira, A. S. P., Souza, X. R., Rodrigues, L. C., & Sousa, D. C. (2019). Replacement of animal fat by canola oil in chicken meatball. Brazilian Journal of Poultry Science, 21(3), 1–10.

Wang, S., Xiao, W., Ma, X., Li, J., Chen, L., & Yao, H. (2019). Analysis of the application potential of coffee oil as an ilmenite flotation collector. Minerals, 9(9), 1–10.

Waterhouse, A. L. (2003). Determination of Total Phenolics. Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc.




How to Cite

Lima, C. M., Pagnossa, J. P. ., Lago, R. C. do ., Neves, I. C. O. ., Oliveira, A. C. S. de ., Verruck, S., Seraglio, S. K. T. ., Piccoli, R. H. ., Carvalho, E. E. N. ., Minim, L. A. ., Rocha, R. A. da ., Botrel, D. A. ., & Pereira, R. G. F. A. . (2020). Functional and technological potential of arabica coffee oils. Research, Society and Development, 9(9), e700997702.



Agrarian and Biological Sciences