Complexity analysis of monthly precipitation in the state of Pernambuco using Sample Entropy
DOI:
https://doi.org/10.33448/rsd-v9i9.7763Keywords:
Hydrological cycle; Rainfall; Time series; Entropy.Abstract
Rainfall is one of the phases of the hydrological cycle responsible for the return of the condensed water from the atmosphere to the Earth's surface. It is a natural process of utmost importance for ecosystem functioning because it regulates water availability for various uses and environmental services. The present work aims to assess the rainfall variability in Pernambuco, Brazil, using monthly precipitation data for the period from 1950 to 2012, collected from the Meteorological Laboratory of Pernambuco State (LAMEP), division of the Technological Institute of Pernambuco (ITEP). Data were analyzed using the Sample Entropy method (SampEn) developed to quantify the complexity of nonlinear time series, and interpolated by Inverse Distance Weighting (IDW) method, providing an estimate of the complexity of the rainfall in the state of Pernambuco. The results show that for all regions of Pernambuco, entropy values of monthly rainfall series are classified from moderate to low, indicating the feasibility of modeling of precipitation dynamics on a monthly scale.
References
Chiaranda, R., Rizzi, N. E., Colpini, C., Soares, T. S., & Silva, V. S. M. (2012). Análise da Precipitação e da Vazão da Bacia do Rio Cuiabá. Revista Brasileira de Ciências Agrárias, 7, 117-122.
Chou, C. M. (2014). Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales. Stochastic Environmental Research and Risk Assessment, 28, 1401-1408.
Dantas, J. A., Santos, M. C., & Heck, R. J. (1998). Caracterização de podzólicos amarelos irrigados e não irrigados de submédio São Francisco. Revista Brasileira de Ciência do Solo [online], 22, 761-771.
Dong, L., & Meng, L. (2013). Application of sample entropy on measuring precipitation series complexity in jiansanjiang branch bureau of china. Nature Environment and Pollution Technology, 12, 249.
Ferraz, J. S. F., Albuquerque, U. P., & Meunier, I. M. J. (2006). Valor de uso e estrutura da vegetação lenhosa às margens do riacho do Navio, Floresta, PE, Brasil. Acta Botanica Brasilica, 1, 125-134.
Ferreira, F. F., Lacerda, F. F., & Aragão, J. O. R. (2006). Relação entre a precipitação observada no leste de Pernambuco e os dados da bóia PIRATA localizada em 32W e 08S. In: XIV Congresso Brasileiro de Meteorologia. Anais 1980 – 2006, cbmet.com. Edição XIV, Florianópolis.
Girão, O., Corrêa, A., & Guerra, A. (2006). Influência da Climatologia Rítmica sobre áreas de risco: o caso da Região Metropolitana do Recife para os anos de 2000 e 2001. Revista de Geografia (Recife), 23, 3-41.
Guedes, M. V. (2012). Situação das áreas de reserva legal e proteção dos recursos naturais em assentamentos rurais da Mata Meridional pernambucana. Dissertação de Mestrado. Universidade Federal de Pernambuco, CFCH. Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente. Recife.
Lacerda, F.F. (1996). Estimativa da variabilidade espacial das chuvas nas microrregiões homogêneas do Estado de Pernambuco em 1995. In: XI Congresso Brasileiro de Meteorologia, Cachoeira Paulista.
Lira, V. M., Oliveira, F. M., Dantas, R. T., & Souza, W. M. De (2006). Alterações da precipitação em municípios do Estado de Pernambuco. Engenharia Ambiental, 3, 52-61.
Manso, V. A. V., Coutinho, P. N., Guerra, N. C., & Soares Junior, C. F. A. (2006). Erosão e progradação do litoral brasileiro (Pernambuco). In: Dieter Muehe. (Org.). Erosão e progradação do litoral brasileiro, 1, 179-196.
Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824 /Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Pinto, N. L. De S., Holtz, A. C. T., Martins, J. A., & Gomide, F. L. S. (1988). Hidrologia Básica.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology- Heart and Circulatory Physiology, 278, 2039-2049.
Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. 517-524.
Shi, W., & Shang P. (2013). Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets. Nonlinear Dynamics, 71, 539–554.
Silva, A. S. A. (2015). Ferramentas para modelagem e interpolação de dados ambientais em escala regional. 104 p. Doutorado em Biometria e Estatística Aplicada – Universidade Federal Rural de Pernambuco, Recife – PE.
Silva, A. S. A., Stosic, B., Menezes, R. S. C., & Singh, V. P. (2019). Comparison of Interpolation Methods for Spatial Distribution of Monthly Precipitation in the State of Pernambuco, Brazil. Journal of Hydrologic Engineering, 24, 04018068.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Cleo Clayton Santos Silva; Rômulo Simões Cezar Menezes; Tatijana Stosic; Antonio Samuel Alves da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.