Survival of zebrafish larvae (Danio rerio) exposed to hydroalcoholic extract of Baccharis dracunculifolia

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7853

Keywords:

Animal model; Flavonoids; Mortality; Phenolic compounds; Toxicology.

Abstract

The objective of this work was to test the toxic effect of different concentrations of hydroalcoholic extract of the Baccharis dracunculifolia plant, using Zebrafish (Danio rerio) larvae of 8 days’ post fertilization. In the first assay, 50.0, 25.0, 12.5, 6.25, 3.125, 1.563 and 0.781 mg mL-1 of extract were diluted in H2O and observations at 0, 1 and 2 hours of the larvae exposed to the extract were made. In the second assay, the dilutions were 2.0, 1.0, 0.40 and 0.20 mg mL-1 of extract in H2O and exposure of the larvae on the extract at 0, 4, 8 and 12 hours. From the development of the two tests it can be seen that when the larvae were exposed to extracts of B. dracunculifolia with dilutions higher than 2.0 mg mL-1, 100% mortality was obtained as soon as the larvae was exposed. The exposure of larvae of Zebrafish (Danio rerio) to eight days after fertilization at the different dilution levels of the hydroalcoholic extract of B. dracunculifolia showed lethal effects. However, when dilutions were tested from 0.40 mg mL-1, a low percentage of mortality was obtained.

References

Abad, M. J., & Bermejo, P. (2007). Baccharis (Compositae): a review update. Arkivoc, 7(7), 76–96.

Bankova, V. (2005). Chemical diversity of propolis and the problem of standardization. Journal of Ethnopharmacology, 100(1), 114–117.

Bartoskova, M., Dobsikova, R., Stancova, V., Pana, O., Zivna, D., Plhalova, L., Blahova, J., & Marsalek, P. (2014). Norfloxacin—toxicity for zebrafish (Danio rerio) focused on oxidative stress parameters. BioMed Research International, 2014, 1–6. https://doi.org/http://dx.doi.org/10.1155/2014/560235.

Basnet, P., Matsuno, T., & Neidlein, R. (1997). Potent free radical scavenging activity of propol isolated from Brazilian propolis. Zeitschrift Für Naturforschung, 52(11–12), 828–833.

Blahová, J., Plhalová, L., Hostovský, M., Divišová, L., Dobšíková, R., Mikulíková, I., Štěpánová, S., & Svobodová, Z. (2013). Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food and Chemical Toxicology, 61, 82–85. https://doi.org/https://dx.doi.org/10.1016/j.fct.2013.02.041.

Caro, M., Iturria, I., Martinez-Santos, M., Pardo, M. A., Rainieri, S., Tueros, I., & Navarro, V. (2016). Zebrafish dives into food research: effectiveness assessment of bioactive compounds. Food & Function, 7(6), 2615–2623. https://doi.org/http://dx.doi.org/10.1039/C6FO00046K.

Chen, M., Yin, J., Liang, Y., Yuan, S., Wang, F., Song, M., & Wang, H. (2016). Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aquatic Toxicology, 174, 54–60. https://doi.org/https://doi.org/10.1016/j.aquatox.2016.02.015.

Fukuda, M., Ohkoshi, E., Makino, M., & Fujimoto, Y. (2006). Studies on the constituents of the leaves of Baccharis dracunculifolia (Asteraceae) and their cytotoxic activity. Chemical and Pharmaceutical Bulletin, 54(10), 1465–1468. https://doi.org/http://dx.doi.org/10.1248/cpb.54.1465.

Ito, J., Chang, F.-R., Wang, H.-K., Park, Y. K., Ikegaki, M., Kilgore, N., & Lee, K.-H. (2001). Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. Journal of Natural Products, 64(10), 1278–1281. https://doi.org/http://dx.doi.org/10.1021/np010211x.

Jarvis, B. B., Wang, S., Cox, C., Rao, M. M., Philip, V., Varaschin, M. S., & Barros, C. S. (1996). Brazilian Baccharis toxins: livestock poisoning and the isolation of macrocyclic trichothecene glucosides. Natural Toxins, 4(2), 58–71. https://doi.org/https://doi.org/10.1002/19960402NT2.

Kimoto, T., Arai, S., Kohguchi, M., Aga, M., Nomura, Y., Micallef, M. J., Kurimoto, M., & Mito, K. (1998). Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detection and Prevention, 22(6), 506–515. https://doi.org/http://dx.doi.og/10.1046/j.1525-1500.1998.00020.x.

Kirkwood, J. S., Lebold, K. M., Miranda, C. L., Wright, C. L., Miller, G. W., Tanguay, R. L., Barton, C. L., Traber, M. G., & Stevens, J. F. (2012). Vitamin C deficiency activates the purine nucleotide cycle in zebrafish. Journal of Biological Chemistry, 287(6), 3833–3841. https://doi.org/http://dx.doi.org/10.1074/jbc.M111.316018.

Loots, D. T., van der Westhuizen, F. H., & Jerling, J. (2006). Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice. Journal of Agricultural and Food Chemistry, 54(4), 1271–1276. https://doi.org/http://dx.doi.org/0.1021/jf052697j.

Matsuno, T., Matsumoto, Y., Saito, M., & Morikawa, J. (1997). Isolation and characterization of cytotoxic diterpenoid isomers from propolis. Zeitschrift Für Naturforschung C, 52(9–10), 702–704. https://doi.org/https://doi.org/10.1515/znc-1997-9-1020.

Mendez, J. (2005). Dihydrocinnamic acids in Pteridium aquilinum. Food Chemistry, 93(2), 251–252. https://doi.org/https://doi.org/10.1016/j.foodchem.2004.09.019.

Messerli, S. M., Ahn, M., Kunimasa, K., Yanagihara, M., Tatefuji, T., Hashimoto, K., Mautner, V., Uto, Y., Hori, H., & Kumazawa, S. (2009). Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytotherapy Research, 23(3), 423–427. https://doi.org/https://doi.org/10.1002/ptr.2658.

Nguyen, B. C. Q., Taira, N., Maruta, H., & Tawata, S. (2016). Artepillin C and other herbal PAK1‐blockers: Effects on hair cell proliferation and related PAK1‐dependent biological function in cell culture. Phytotherapy Research, 30(1), 120–127. https://doi.org/http://dx.doi.org/10.1002/ptr.5510.

Park, Y K, Koo, M. H., Abreu, J. A., Ikegaki, M., Cury, J. A., & Rosalen, P. L. (1998). Antimicrobial activity of propolis on oral microorganisms. Currents Microbiological, 36(1), 24–28. http://www.ncbi.nlm.nih.gov/pubmed/9405742

Park, Yong K, Paredes-Guzman, J. F., Aguiar, C. L., Alencar, S. M., & Fujiwara, F. Y. (2004). Chemical constituents in Baccharis dracunculifolia as the main botanical origin of southeastern Brazilian propolis. Journal of Agricultural and Food Chemistry, 52(5), 1100–1103. https://doi.org/http://dx.doi.org/10.1021/jf021060m.

Rodrigues, C. R. F., Dias, J. H., Semedo, J. G., Silva, J., Ferraz, A. B. F., & Picada, J. N. (2009). Mutagenic and genotoxic effects of Baccharis dracunculifolia (DC). Journal of Ethnopharmacology, 124(2), 321–324. https://doi.org/https://doi.org/10.1016/j.jep.2009.04.022.

Silva Filho, A. A., Bueno, P. C. P., Gregório, L. E., Silva, M. L. A., Albuquerque, S., & Bastos, J. K. (2004). In‐vitro trypanocidal activity evaluation of crude extract and isolated compounds from Baccharis dracunculifolia DC (Asteraceae). Journal of Pharmacy and Pharmacology, 56(9), 1195–1199. https://doi.org/http://dx.doi.org/10.1211/0022357044067.

Varaschin, M. S., & Alessi, A. C. (2003). Poisoning of mice by Baccharis coridifolia: an experimental model. Veterinary and Human Toxicology, 45(1), 42–44.

Verdi, L. G., Brighente, I. M. C., & Pizzolatti, M. G. (2005). Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Química Nova, 28(1), 85–94.

Vynograd, N., Vynograd, I., & Sosnowski, Z. (2000). A comparative multi-centre study of the efficacy of propolis, acyclovir and placebo in the treatment of genital herpes (HSV). Phytomedicine, 7(1), 1–6. https://doi.org/https://doi.org/10.1016/S0944-7113(00)80014-8.

Zhao, X., Wang, S., Wu, Y., You, H., & Lv, L. (2013). Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology, 136, 49–59. https://doi.org/https://doi.org/10 .1016/j.aquatox.2013.03.019.

Published

01/09/2020

How to Cite

RAMOS, T. R.; SOUZA, K. A. de .; PASSETTI, R. A. C. .; CASETTA, J.; VITAL, A. C. P. .; RIBEIRO, R. P.; ABREU FILHO, B. A. de .; PRADO, I. N. do . Survival of zebrafish larvae (Danio rerio) exposed to hydroalcoholic extract of Baccharis dracunculifolia. Research, Society and Development, [S. l.], v. 9, n. 9, p. e634997853, 2020. DOI: 10.33448/rsd-v9i9.7853. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7853. Acesso em: 28 dec. 2024.

Issue

Section

Agrarian and Biological Sciences