Sobrevivência de larvas de Zebrafish (Danio rerio) expostas ao extrato hidroalcoólico de Baccharis dracunculifolia

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.7853

Palavras-chave:

Compostos fenólicos; Flavonoides; Modelo animal; Mortalidade; Toxicologia

Resumo

O objetivo deste trabalho foi testar o efeito tóxico de diferentes concentrações de extrato hidroalcoólico da planta Baccharis dracunculifolia, utilizando larvas de zebrafish (Danio rerio) de 8 dias pós-fertilização. No primeiro ensaio 50,0, 25,0, 12,5, 6,25, 3,125, 1,563 e 0,781 mg/mL de extrato foram diluídos em H2O e foram realizadas observações em 0, 1 e 2 horas das larvas expostas ao extrato. No segundo ensaio, as diluições foram 2,0; 1,0; 0,40 e 0,20 mg/mL do extrato em H2O e exposição das larvas no extrato em 0, 4, 8 e 12 horas. A partir do desenvolvimento dos dois testes pode-se verificar que quando as larvas foram expostas a extratos de B. dracunculifolia com diluições superiores a 2,0 mg/mL, obteve-se 100% de mortalidade assim que a larva foi exposta. A exposição de larvas de zebrafish (Danio rerio) aos oito dias após-fertilização nos diferentes níveis de diluição do extrato hidro alcoólico de B. dracunculifolia apresentou efeitos letais. Porém, quando foram testadas diluições a partir de 0,40 mg/mL, obteve-se um baixo percentual de mortalidade.

Referências

Abad, M. J., & Bermejo, P. (2007). Baccharis (Compositae): a review update. Arkivoc, 7(7), 76–96.

Bankova, V. (2005). Chemical diversity of propolis and the problem of standardization. Journal of Ethnopharmacology, 100(1), 114–117.

Bartoskova, M., Dobsikova, R., Stancova, V., Pana, O., Zivna, D., Plhalova, L., Blahova, J., & Marsalek, P. (2014). Norfloxacin—toxicity for zebrafish (Danio rerio) focused on oxidative stress parameters. BioMed Research International, 2014, 1–6. https://doi.org/http://dx.doi.org/10.1155/2014/560235.

Basnet, P., Matsuno, T., & Neidlein, R. (1997). Potent free radical scavenging activity of propol isolated from Brazilian propolis. Zeitschrift Für Naturforschung, 52(11–12), 828–833.

Blahová, J., Plhalová, L., Hostovský, M., Divišová, L., Dobšíková, R., Mikulíková, I., Štěpánová, S., & Svobodová, Z. (2013). Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food and Chemical Toxicology, 61, 82–85. https://doi.org/https://dx.doi.org/10.1016/j.fct.2013.02.041.

Caro, M., Iturria, I., Martinez-Santos, M., Pardo, M. A., Rainieri, S., Tueros, I., & Navarro, V. (2016). Zebrafish dives into food research: effectiveness assessment of bioactive compounds. Food & Function, 7(6), 2615–2623. https://doi.org/http://dx.doi.org/10.1039/C6FO00046K.

Chen, M., Yin, J., Liang, Y., Yuan, S., Wang, F., Song, M., & Wang, H. (2016). Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aquatic Toxicology, 174, 54–60. https://doi.org/https://doi.org/10.1016/j.aquatox.2016.02.015.

Fukuda, M., Ohkoshi, E., Makino, M., & Fujimoto, Y. (2006). Studies on the constituents of the leaves of Baccharis dracunculifolia (Asteraceae) and their cytotoxic activity. Chemical and Pharmaceutical Bulletin, 54(10), 1465–1468. https://doi.org/http://dx.doi.org/10.1248/cpb.54.1465.

Ito, J., Chang, F.-R., Wang, H.-K., Park, Y. K., Ikegaki, M., Kilgore, N., & Lee, K.-H. (2001). Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. Journal of Natural Products, 64(10), 1278–1281. https://doi.org/http://dx.doi.org/10.1021/np010211x.

Jarvis, B. B., Wang, S., Cox, C., Rao, M. M., Philip, V., Varaschin, M. S., & Barros, C. S. (1996). Brazilian Baccharis toxins: livestock poisoning and the isolation of macrocyclic trichothecene glucosides. Natural Toxins, 4(2), 58–71. https://doi.org/https://doi.org/10.1002/19960402NT2.

Kimoto, T., Arai, S., Kohguchi, M., Aga, M., Nomura, Y., Micallef, M. J., Kurimoto, M., & Mito, K. (1998). Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detection and Prevention, 22(6), 506–515. https://doi.org/http://dx.doi.og/10.1046/j.1525-1500.1998.00020.x.

Kirkwood, J. S., Lebold, K. M., Miranda, C. L., Wright, C. L., Miller, G. W., Tanguay, R. L., Barton, C. L., Traber, M. G., & Stevens, J. F. (2012). Vitamin C deficiency activates the purine nucleotide cycle in zebrafish. Journal of Biological Chemistry, 287(6), 3833–3841. https://doi.org/http://dx.doi.org/10.1074/jbc.M111.316018.

Loots, D. T., van der Westhuizen, F. H., & Jerling, J. (2006). Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice. Journal of Agricultural and Food Chemistry, 54(4), 1271–1276. https://doi.org/http://dx.doi.org/0.1021/jf052697j.

Matsuno, T., Matsumoto, Y., Saito, M., & Morikawa, J. (1997). Isolation and characterization of cytotoxic diterpenoid isomers from propolis. Zeitschrift Für Naturforschung C, 52(9–10), 702–704. https://doi.org/https://doi.org/10.1515/znc-1997-9-1020.

Mendez, J. (2005). Dihydrocinnamic acids in Pteridium aquilinum. Food Chemistry, 93(2), 251–252. https://doi.org/https://doi.org/10.1016/j.foodchem.2004.09.019.

Messerli, S. M., Ahn, M., Kunimasa, K., Yanagihara, M., Tatefuji, T., Hashimoto, K., Mautner, V., Uto, Y., Hori, H., & Kumazawa, S. (2009). Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytotherapy Research, 23(3), 423–427. https://doi.org/https://doi.org/10.1002/ptr.2658.

Nguyen, B. C. Q., Taira, N., Maruta, H., & Tawata, S. (2016). Artepillin C and other herbal PAK1‐blockers: Effects on hair cell proliferation and related PAK1‐dependent biological function in cell culture. Phytotherapy Research, 30(1), 120–127. https://doi.org/http://dx.doi.org/10.1002/ptr.5510.

Park, Y K, Koo, M. H., Abreu, J. A., Ikegaki, M., Cury, J. A., & Rosalen, P. L. (1998). Antimicrobial activity of propolis on oral microorganisms. Currents Microbiological, 36(1), 24–28. http://www.ncbi.nlm.nih.gov/pubmed/9405742

Park, Yong K, Paredes-Guzman, J. F., Aguiar, C. L., Alencar, S. M., & Fujiwara, F. Y. (2004). Chemical constituents in Baccharis dracunculifolia as the main botanical origin of southeastern Brazilian propolis. Journal of Agricultural and Food Chemistry, 52(5), 1100–1103. https://doi.org/http://dx.doi.org/10.1021/jf021060m.

Rodrigues, C. R. F., Dias, J. H., Semedo, J. G., Silva, J., Ferraz, A. B. F., & Picada, J. N. (2009). Mutagenic and genotoxic effects of Baccharis dracunculifolia (DC). Journal of Ethnopharmacology, 124(2), 321–324. https://doi.org/https://doi.org/10.1016/j.jep.2009.04.022.

Silva Filho, A. A., Bueno, P. C. P., Gregório, L. E., Silva, M. L. A., Albuquerque, S., & Bastos, J. K. (2004). In‐vitro trypanocidal activity evaluation of crude extract and isolated compounds from Baccharis dracunculifolia DC (Asteraceae). Journal of Pharmacy and Pharmacology, 56(9), 1195–1199. https://doi.org/http://dx.doi.org/10.1211/0022357044067.

Varaschin, M. S., & Alessi, A. C. (2003). Poisoning of mice by Baccharis coridifolia: an experimental model. Veterinary and Human Toxicology, 45(1), 42–44.

Verdi, L. G., Brighente, I. M. C., & Pizzolatti, M. G. (2005). Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Química Nova, 28(1), 85–94.

Vynograd, N., Vynograd, I., & Sosnowski, Z. (2000). A comparative multi-centre study of the efficacy of propolis, acyclovir and placebo in the treatment of genital herpes (HSV). Phytomedicine, 7(1), 1–6. https://doi.org/https://doi.org/10.1016/S0944-7113(00)80014-8.

Zhao, X., Wang, S., Wu, Y., You, H., & Lv, L. (2013). Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology, 136, 49–59. https://doi.org/https://doi.org/10 .1016/j.aquatox.2013.03.019.

Downloads

Publicado

01/09/2020

Como Citar

RAMOS, T. R.; SOUZA, K. A. de .; PASSETTI, R. A. C. .; CASETTA, J.; VITAL, A. C. P. .; RIBEIRO, R. P.; ABREU FILHO, B. A. de .; PRADO, I. N. do . Sobrevivência de larvas de Zebrafish (Danio rerio) expostas ao extrato hidroalcoólico de Baccharis dracunculifolia. Research, Society and Development, [S. l.], v. 9, n. 9, p. e634997853, 2020. DOI: 10.33448/rsd-v9i9.7853. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7853. Acesso em: 25 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas