Implication of the use of different sampling grids to determine soil resistance to penetration and indicate management

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7871

Keywords:

Penetrograph; Sample mesh; Precision agriculture.

Abstract

It’s necessary to study the variability of soil compaction identified by the resistance to penetration, allowing handling at a variable rate with agricultural equipment before an adequate sampling grid. The aim of this study was to evaluate the spatial variability of resistance to penetration with different sampling grids and indication of management of an Oxisol. An experimental area of ​​0.2 ha and a 4 x 4 m sampling grid were used, totaling 120 readings of resistance to penetration. The average gravimetric soil moisture in the 0.0-0.2 m layer at the time of data collection was 43.5%. The data were submitted to statistical analysis, performed for different sampling intensities, simulated by the exclusion of sampling points uniformly distributed across the area, obtaining a 4 x 4 m, 4 x 8 m and 4 x 40 m sampling grid. The layer between the range of 0.05 and 0.2 m showed a higher mean of the penetration resistance values ​​in relation to the other studied layers. To perform motorized handling at a fixed rate throughout the area, the 4x40 mesh can be used. To perform handling at a variable rate, the ideal mesh is 4x4, being possible to use the 4x8 mesh.

Author Biography

Jhonatan Spliethoff, Universidade Estadual do Centro Oeste do Paraná

Acadêmico de doutorado em Programa de Pós Graduação em Agronomia da Universidade Estadual do Centro Oeste.

References

Andrade, R. da S., Stone, L. F., & de Godoy, S. G. (2013). Estimation of soil resistance to penetration based on the S index and effective stress. Revista Brasileira de Engenharia Agricola e Ambiental, 17(9), 932–937. https://doi.org/10.1590/S1415-43662013000900004

Araújo, D.R, Mion, R. L., Sombra, W. A., Andrade, R. R. De, & Amorim, M. Q. (2014). Spatial continuity of soil physical attributes submitted to different use and soil management. Revista Caatinga, 27(2), 101–115. chrome-extension://dagcmkpagjlhakfdhnbomgmjdpkdkl ff/enhanced-reader.html?pdf=https%3A%2F%2Fperiodicos.ufersa.edu.br%2Fin dex.php%2Fcaatinga%2Farticle%2Fdownload%2F2723%2Fpdf_118%2F

Araujo, M. A., Tormena, C. A., Inoue, T. T., & Costa, A. C. S. (2004). Effects of chiseling on physical quality of a dystroferric red latosol after thirteen years of no-tillage. Brazilian Society of Soil Science, 28(3), 495–504. https://doi.org/10.1590/s0100-06832004000300011

Bergamin, A. C., Vitorino, A. C. T., Franchini, J. C., de Souza, C. M. A., & de Souza, F. R. (2010). Induced compaction of a rhodic acrustox as related to maize root growth. Brazilian Society of Soil Science, 34(3), 681–691. https://doi.org/10.1590/s0100-06832010000300009

Bernardi, A. C. de C., Bettiol, G. M., Grego, C. R., Andrade, R. G., Rabello, L. M., & Inamasu, R. Y. (2015). Ferramentas de agricultura de precisão como auxílio ao manejo da fertilidade do solo. Cadernos de Ciência & Tecnologia, 211–227.

Bottega, E. L., de Queiroz, D. M., Pinto, F. de A. de C., & de Souza, C. M. A. (2013). Spatial variability of soil attributes in no a no-tillage system with crop rotation in the Brazilian savannah. Revista Ciencia Agronomica, 44(1), 1–9. https://doi.org/10.1590/s1806-66902013000100001

Carneiro, J. S. D. S., Gomes De Faria, Á. J., Fidelis, R. R., Silva Neto, S. P. Da, Santos, A. C. Dos, & Silva, R. R. Da. (2016). Diagnosis and management of spatial variability of soil fertility in the Cerrado. Scientia Agraria, 17(3), 38–49. https://doi.org/10.5380/rsa.v17i3.50096

Cortez, J. W., Mauad, M., Souza, L. C. F. de, Rufino, M. V., & Souza, P. H. N. de. (2017). Agronomical attributes of soybeans and soil resistance to penetration in no-tillage and chiseled surfaces. Engenharia Agrícola, 37(1), 98–105. https://doi.org/10.1590/1809-4430-eng.agric.v37n1p98-105/2017

Debiasi, H., Franchini, J. C., Álvares De Oliveira, F., & Martins Machado, T. (2011). Adjustment of sampling grids for soil resistance to penetration mapping in a Haplohumox. Agricultura de Precisão: Um Novo Olhar, 2, 138–142.

Falker. (2009). Electronic soil compaction manual (Patent No. PenetroLog, PLG1020).

Franchini, J., Debiasi, H., Sacoman, A., Nepomuceno, A., & Farias, J. (2009). Manejo do solo para redução das perdas de produtividade pela seca. Documento 314-Embrapa Soja, 39.

Giacomeli, R., Marchesan, E., Sartori, G. M. S., Donato, G., da Silva, P. R. F., Kaiser, D. R., & Aramburu, E. B. B. (2016). Deep tillage and furrow opener seeders for corn cropping in Planosols. Pesquisa Agropecuaria Brasileira, 51(3), 261–270. https://doi.org/10.1590/S0100-204X2016000300008

Girardello, V. C., Amado, T. J. C., Santi, A. L., Cherubin, M. R., Kunz, J., & Teixeira, T. de G. (2014). Soil penetration resistance, efficiency of mechanical chisel plowing and soybean grain yield in a clayey Oxisol under long-term no-till. Brazilian Society of Soil Science, 38(4), 1234–1244. https://doi.org/10.1590/S0100-06832014000400020

Girardello, V. C., Amado, T. J. C., Santi, A. L., Lanzanova, M. E., & Tasca, A. (2017). Soil penetration resistance and soybean root growth under no till with controlled traffic farming. Scientia Agraria, 18(2), 86–96. https://doi.org/10.5380/rsa.v18i2.50693

Gorucu, S., Khalilian, A., Han, Y., Dodd, R., Wolak, F., & Keskin, M. (2001). Variable Depth Tillage Based on Geo-Referenced Soil Compaction Data in Coastal Plain Region of South Carolina. https://doi.org/10.13031/2013.7322

Grego, C. R., & Vieira, S. R. (2005). Spatial variability of soil physical properties on an experimental plot. Brazilian Society of Soil Science, 29, 169–177.

Iapar. (2018). Precipitação Anual. Atlas Climático Do Paraná. Recuperado de http://www.iapar.br/modules/conteudo/conteudo.php?conteudo=595

Mion, R. L., Nascimento, E. M. S., Sales, F. A. D. L., Silva, S. F. Da, Duarte, J. M. L., & Sousa, B. M. De. (2012). Spatial variability of total porosity, moisture and soil resistance to penetration of a yellow ultisol. Semina: Ciencias Agrarias, 33(6), 2057–2066. https://doi.org/10.5433/1679-0359.2012v33n6p2057

Moraes, M. T. de, Debiasi, H., Franchini, J. C., & Silva, V. R. da. (2012). Correction of resistance to penetration by pedofunctions and a reference soil water content. Brazilian Society of Soil Science, 36(6), 1704–1713. https://doi.org/10.1590/S0100-06832012000600004

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM, NTE.

Pereira, J. O., Lamb, J. R., Bracarense, J. C., Defossez, P., Richard, G., Silva, S. de L., Pordeus, R. V., & Diniz, M. J. (2017). Determination of the soil compaction in real time on field with plate penetrometer and data filtering system. African Journal of Agricultural Research, 12(13), 1112–1120. https://doi.org/10.5897/ajar2016.11465

Reynolds, W. D., Drury, C. F., Yang, X. M., & Tan, C. S. (2008). Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146(3–4), 466–474. https://doi.org/10.1016/j.geoderma.2008.06.017

Rodrigues, M. S., Corá, J. E., & Fernandes, C. (2012). Soil sampling intensity and spatial distribution pattern of soils attributes and corn yield in no-tillage system. Engenharia Agricola, 32(5), 852–865. https://doi.org/10.1590/S0100-69162012000500005

Santi, A. L., Amado, T. J. C., Cherubin, M. R., Martin, T. N., Pires, J. L., Flora, L. P. Della, & Basso, C. J. (2012). Principal component analysis of soil chemical and physical attributes limiting grain yield. Pesquisa Agropecuária Brasileira, 47(9), 1346–1357. https://doi.org/10.1590/S0100-204X2012000900020

Santos, H. dos, Jacomine, P., Anjos, L. dos, Oliveira, V. de, Lumbreras, J. F., Coelho, M., Almeida, J. de, Araujo Filho, J. de, Oliveira, J. de, & Cunha, T. J. F. (2018). Brazilian system of soil classification - Embrapa (5a ed.). Recuperado de https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos

Souza, E. R. (2007). Variabilidade espacial de propriedades físicas e químicas de um Neossolo Flúvico cultivado com cenoura irrigada com água moderadamente salina [Universidade Federal Rural de Pernambuco]. Recuperado de http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4942/2/Edivan Rodrigues de Souza.pdf

Souza, Z. M., Marques Júnior, J., Pereira, G. T., & Bento, M. J. C. (2004). Spatial variability of physical attributes of Oxisol under sugarcane crop. Revista Brasileira de Engenharia Agrícola e Ambiental, 8(1), 51–58. https://doi.org/10.1590/s1415-43662004000100008

Stefanoski, D. C., Santos, G. G., Marchão, R. L., Petter, F. A., & Pacheco, L. P. (2013). Soil use and management and its impact on physical quality. Revista Brasileira de Engenharia Agricola e Ambiental, 17(12), 1301–1309. https://doi.org/10.1590/S1415-43662013001200008

Tavares Filho, J., & Ribon, A. A. (2008). Variation in soil penetration resistance in response to sample number and sampling type. Brazilian Society of Soil Science, 32(2), 487–494. https://doi.org/10.1590/s0100-06832008000200003

Valadão, F. C. de A., Weber, O. L. dos S., Valadão Júnior, D. D., Scapinelli, A., Deina, F. R., & Bianchini, A. (2015). Phosphorus fertilization and soil compaction: soybean and maize root system and soil physical properties. Brazilian Society of Soil Science, 39(1), 243–255. https://doi.org/10.1590/01000683rbcs20150144

Published

07/09/2020

How to Cite

Spliethoff, J., Rampim, L., Pott, C. A., & Lustosa, S. B. C. . (2020). Implication of the use of different sampling grids to determine soil resistance to penetration and indicate management. Research, Society and Development, 9(9), e790997871. https://doi.org/10.33448/rsd-v9i9.7871

Issue

Section

Agrarian and Biological Sciences