DICOM compression and decompression method using double cone
DOI:
https://doi.org/10.33448/rsd-v9i9.8032Keywords:
Double Cone; Compression; Decompression; Codecs; DICOM.Abstract
The increase of information in the medical environment caused by digital imaging settings is notable. The search and use of these technological tools aimed at medicine require a greater availability of storage, generating increasing costs. In medicine, together with information technology, there is a format of images used in exams, diagnostics, tomography, among others. This format, entitled DICOM, was created in order to standardize uses in medical devices for exam answers. An open question is the compression of DICOM data, in order to maintain quality, maintaining high rates of compression. This presents a new method for compressing and decompressing DICOM data using a dual cone bijector function and a video codec, called DC (Double Cone). This work offers 3 changes to the DC method (DC1, DC2 and DC3). The results obtained with a new technique show that the compression, although with loss, has a similarity index very close to the original image (SSIM = 0.99), and an accuracy ratio equal to 69.51, in the better case. The better performing version was the DC2.
References
Aldemir, E., Tohumoglu, G., & Selver, M. A. (2019). Performance Evaluation of Lossless Compression Algorithms for Medical Images. 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE.
Balasamy, K., & Ramakrishnan, S. (2019). An intelligent reversible watermarking system for authenticating medical images using Wavelet and PSO. Cluster Computing.
Bhagat, A. P., & Atique, M. (2012). Medical images: Formats, compression techniques and DICOM image retrieval a survey. 2012 International Conference on Devices, Circuits and Systems, ICDCS 2012.
Bross, B., Han, W. J., Ohm, J. R., Sullivan, G. J., & Wiegand, T. (2012). High efficiency video coding (HEVC) text specification, draft 8, no. JCTVC-J1003_d7, ISO/IEC Draft Int’l. Standard.
Bui, V., Chang, L. C., Li, D., Hsu, L. Y., & Chen, M. Y. (2016). Comparison of lossless video and image compression codecs for medical computed tomography datasets. Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016.
C., N. C. I. C. P. T. A. (2018). Radiology data from the clinical proteomic tumor analysisconsortium glioblastoma multiforme [cptac-gbm] collection [data set]. the cancer imagingarchive.
CAR. Canadian association of radiologists. (2011). Canada health infoway. Retrieved from https://car.ca/wp-content/uploads/Compression-in-Digital-Imaging-2011.pdf
Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., et al. (2013). The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging, 26(6), 1045–1057. Springer.
Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big Data.
Dubey, V. G., & Singh, J. (2012). 3D medical image compression using Huffman encoding technique. International Journal of scientific and research publications, 2(9). Citeseer.
Erickson, B., Akkus, Z., Sedlar, J., & Kofiatis, P. (2017). Data from LGG-1p19qDeletion. The Cancer Imaging Archive.
Erickson, B. J. (2002). Irreversible compression of medical images. Journal of Digital Imaging.
Gonzalez, R. C., & Woods, R. E. (2007). Digital Image Processing (3rd Edition). Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©2006.
Gupta, P., Srivastava, P., Bhardwaj, S., & Bhateja, V. (2011). A modified PSNR metric based on HVS for quality assessment of color images. Proceedings of the 2011 International Conference on Communication and Industrial Application, ICCIA 2011.
Horé, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. Proceedings - International Conference on Pattern Recognition.
Huang, H. K. (2019). PACS-Based Multimedia Imaging Informatics: Basic Principles and Applications. John Wiley & Sons.
El Jaouhari, S., Gibaud, B., Lemonnier, P., Pasquier, G., Poiseau, E., Guiffard, E., Hardy, P., et al. (2019). Introduction to DICOM-RTV: a new standard for real-time video communication in hospitals. 2019 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2019.
Kadam, S., & Rathod, V. R. (2019). Medical image compression using wavelet-based fractal quad tree combined with huffman coding. Advances in Intelligent Systems and Computing.
Kasban, H., & Hashima, S. (2019). Adaptive Radiographic Image Compression Technique using Hierarchical Vector Quantization and Huffman Encoding. Journal of Ambient Intelligence and Humanized Computing.
Langer, S. G. (2011). Challenges for data storage in medical imaging research. Journal of Digital Imaging.
Lee Rodgers, J., & Alan Nice Wander, W. (1988). Thirteen ways to look at the correlation coefficient. American Statistician.
Li, M., Chen, Z., & Sun, Z. (2020). A novel approach for blind recognition of shortened RS codes.
Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M. W., & Bilgin, A. (2017). The current role of image compression standards in medical imaging. Information (Switzerland).
Liu, W., & Lin, W. (2013). Additive white gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing.
De Macedo, D. D. J., Von Wangenheim, A., & Dantas, M. A. R. (2015). A Data Storage Approach for Large-Scale Distributed Medical Systems. Proceedings - 2015 9th International Conference on Complex, Intelligent, and Software Intensive Systems, CISIS 2015.
Mauro, B. (2006). Document and image compression. CRC press.
Mrak, M., Grgic, S., & Grgic, M. (2003). Picture quality measures in image compression systems. The IEEE Region 8 EUROCON 2003. Computer as a Tool. (Vol. 1, pp. 233–236). IEEE.
N. Baraskar, T., & R. Mankar, V. (2020). The DICOM Image Compression and Patient Data Integration using Run Length and Huffman Encoder. Coding Theory.
Ndong, B., Diop, O., Bathily, E. H. A. L., Mbodj, M., Gassama, S. S., Mboup, M. L., Tall, K., et al. (2015). JPEG2000 compression for scintigraphic images of metastasis of the prostatic cancer. 2015 2nd World Symposium on Web Applications and Networking, WSWAN 2015.
Parikh, S. S., Ruiz, D., Kalva, H., Fernandez-Escribano, G., & Adzic, V. (2018). High Bit-Depth Medical Image Compression with HEVC. IEEE Journal of Biomedical and Health Informatics.
Pole, A., & Shriram, R. (2018). 3-D Medical Image Compression by Using HEVC. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) (pp. 1–5). IEEE.
Rahmat, R. F., Andreas, T. S. M., Fahmi, F., Pasha, M. F., Alzahrani, M. Y., & Budiarto, R. (2019). Analysis of dicom image compression alternative using huffman coding. Journal of Healthcare Engineering.
Ridley, E. (1997). Universities collaborate on de facto standard for lossy compression. Telemedicine and Telehealth Networks, 3(6).
Russo, F. (2003). A method for estimation and filtering of Gaussian noise in images. IEEE Transactions on Instrumentation and Measurement, 52(4), 1148–1154. IEEE.
Saraiva, A. A., Castro, F. M. J., Costa, N. J. C., Sousa, J. V. M., Ferreira, N. M. F., Valente, A., & Soares, S. (2019). Comparative Study of Compression Techniques Applied in Different Biomedical Signals. BIOSIGNALS (pp. 132–138).
Saravanan, C., & Ponalagusamy, R. (2009). Lossless grey-scale image compression using source symbols reduction and Huffman coding. International Journal of Image Processing (IJIP), 3(5), 246.
Schlupkothen, F. R. N. (2012). Interoperability between medical image archives and consumer devices through web services. Digest of Technical Papers - IEEE International Conference on Consumer Electronics.
Schmainda, K. M., & Prah, M. (2018). Data from brain-tumor-progression. The Cancer Imaging Archive.
Shaiboun, M. M., & Shaheen, M. (2016). Streaming medical images using video compression. 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 125–128). IEEE.
Singh, A., Khehra, B. S., & Kohli, G. K. (2019). Differential Huffman Coding Approach for Lossless Compression of Medical Images. International Conference on Intelligent Computing and Communication (pp. 579–589). Springer.
Tackie Ammah, P. N., & Owusu, E. (2019). Robust medical image compression based on wavelet transform and vector quantization. Informatics in Medicine Unlocked.
Toh, K. K. V., & Isa, N. A. M. (2010). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters.
Venkat, R. A., & Vaidyanathan, C. (2019). Lossless Video Compression Using Bayesian Networks and Entropy Coding. 2019 IEEE Region 10 Symposium (TENSYMP) (pp. 254–259). IEEE.
Wang, C., Yan, Z., Pedrycz, W., Zhou, M., & Li, Z. (2020). A weighted fidelity and regularization-based method for mixed or unknown noise removal from images on graphs. IEEE Transactions on Image Processing, 29, 5229–5243. IEEE.
Wong, S., Huang, H. K., Zaremba, L., & Gooden, D. (1995). Radiologic Image Compression—A Review. Proceedings of the IEEE.
Zheng, T.-L., Zhu, G.-Y., Wang, Y., Zhao, X.-Y., Li, Y.-Y., & Zhao, L. (2019). A Hybrid Method for Medical Image Compression in Mobile Picture Archiving and Communication System. Journal of Medical Imaging and Health Informatics, 9(7), 1401–1406. American Scientific Publishers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Aratã Andrade Saraiva; Marcos Soares de Oliveira; Joao Batista Neto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.