Bacteriophages’ action against mastitis-causing bactéria

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8541

Keywords:

Antibacterial action; Anti-biofilm action; Natural products; Phage; Endolysin.

Abstract

Mastitis is a breast tissue disease with a high incidence in dairy cows and implications ranging from the health of the animals to the economy of the sector. Although antibiotic therapy is widely used, the search for new perspectives in the management and treatment of this disease is necessary. Although phage research preceded the discovery of antibiotics, with the appearance of antibiotics and their efficiency in treating infections, phage therapy fell into disuse. However, phage therapy has now re-emerged as an alternative for combating multidrug-resistant bacteria. The relationship between phages, bacteria, and the immune system is unique, generating a wide range of opportunities, some of which have yet to be studied. Thus, the objective of this review was to analyze the use of bacteriophages in the control of bovine mastitis and its association with other natural products today. Phages have been shown to exert effective antibacterial and anti-biofilm activity, and their interactions with other substances of natural origin could be a viable path for treating disease. Despite being little explored, phages are already being considered as an alternative for treatment against the main bacterial agents of mastitis. In this review, the safety and future pathways of phage therapy are addressed in order to indicate points where research still needs to progress and the main advantages and difficulties in this area.

References

Aldori, A. A., Mahdii, E. F., Abbas, A. K. & Jassim, S. A. A. (2015). Bacteriophage biocontrol rescues mice bacteremic of clinically isolated mastitis from dairy cows associated with methicillin-resistant Staphyloccocus aureus. Advances in Microbiology, 5, (06), 383.

Ashraf, A. & Imran, M. (2018). Diagnosis of bovine mastitis: from laboratory to farm. Tropical Animal Health and Production, 50, (6), 1193-1202.

Bai, Q., Yang, Y. & Lu, C. (2016). Isolation and characterization of Siphovirus phages infecting bovine Streptococcus agalactiae. Acta Microbiologica Sinica, 56, (2), 317-326.

Bai, Q., Zhang, W., Yang, Y., Tang, F., Nguyen, X., Liu, G. & Lu, C. (2013). Characterization and genome sequencing of a novel bacteriophage infecting Streptococcus agalactiae with high similarity to a phage from Streptococcus pyogenes. Archives of Virology, 158, (8), 1733-1741.

Bakkali, F., Ayerbeck, S., Ayerbeck, D. & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and Chemical Toxicology, 46, (2), 446-475.

Bogni, C., Odierno, L., Raspanti, C., Giraudo, J., Larriestra, A., Reinoso, E., Lasagno, M., Ferrari, M., Ducrós, E., Frigerio, C., Bettera, S., Pellegrino, M., Frola, I., Dieser, S. & Vissio, C. (2017). War against mastitis: Current concepts on controlling bovine mastitis pathogens. Science against microbial pathogens: Communicating current research and technological advances, 10, 483-494.

Burrowes, B., Harper, D. R., Anderson, J., McConville, M. & Enright, M. (2011). Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Review of Anti-infective Therapy, 9, (9), 775-785.

Chan, B. K., Abedon, S. T. & Carrillo, C. L. (2013). Phage cocktails and the future of phage therapy. Future Microbiology, 8, (6), 769-783.

Cheng, D., Zhu, S., Yin, Z., Ding, W., Mu, Z., Su, Z., & Sun, H. (2010). Prevalence of bacterial infection responsible for bovine mastitis. African Journal of Microbiology Research, 4, (11), 1110-1116.

Cinquerrui, S., Mancuso, F., Vladisavlevic, G. T., Bakker, S. E. & Malik, D. J. (2018). Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Frontiers in Microbiology, 9, 2172.

Cisek, A. A., Dabrowska, I., Gregorczyk, K. P. & Wyzewski, Z. (2017). Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Current Microbiology, 74, (2), 277-283.

D'herelle, F. (1931). Annual Graduate Fortnight. Medical and Surgical Aspects of Acute Bacterial Infections, October 20 to 31, 1930: Bacteriophage as a Treatment in Acute Medical and Surgical Infections. Bulletin of the New York Academy of Medicine, 7, (5), 329.

Domingo-Calap, P., Georgel, P. & Bahram, S. (2016). Back to the future: bacteriophages as promising therapeutic tools. Hla, 87, (3), 133-140.

Drulis-Kawa, Z., Majkowska-Skrobek, G., Maciejewska, B., Dekattre, A.S. & Lavigne, R. (2012). Learning from bacteriophages-advantages and limitations of phage and phage-encoded protein applications. Current Protein and Peptide Science, 13, (8), 699-722.

Duerkop, B. A., Huo, W., Bhardwaj, P., Palmer, K. L. & Hooper, L. V. (2016). Molecular basis for lytic bacteriophage resistance in enterococci. MBio, 7, (4), e01304-16.

Dykes, G. A. & Moorhead, S. M. (2002). Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. International Journal of Food Microbiology, 73, (1), 71-81.

El Haddad, L., Lemay, M. J., Khalil, G. E., Moineau, S. & Champagne, C. P. (2018). Microencapsulation of a Staphylococcus phage for concentration and long-term storage. Food Microbiology, 76, 304-309.

Fahliyani, S. A., Mall, K. B., & Guandehari, F. (2018). Novel lytic bacteriophages of Klebsiella oxytoca ABG-IAUF-1 as the potential agents for mastitis phage therapy. FEMS Microbiology Letters, 365, (20), 223.

Figueiredo, A. C. L. & Almeida, R. C. C. (2017). Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Brazilian Journal of Microbiology, 48, (4), 724-729.

García, P., Martínez, B., Rodríguez, L. & Rodríguez, A. (2010). Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. International Journal of Food Microbiology, 141, (3), 151-155.

Ghosh, A., Ricke, S. C., Almeida, G. & Gibson, K. E. (2016). Combined application of essential oil compounds and bacteriophage to inhibit growth of Staphylococcus aureus in vitro. Current Microbiology, 72, (4), 426-435.

Gorski, A., Dabrowska, K., Switala-Jelen, K. Nowaczyk, M., Weber-Dabrowska, B, Boratynski, J., Wietrzyk, J. & Opolski, A. (2003). New insights into the possible role of bacteriophages in host defense and disease. Medical Immunology, 2, (1), 2.

Holley, R. A. & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22, (4), 273-292.

Ibarra-Sánchez, L. A., Tessell, M. L. V. & Miller, M. J. (2018). Antimicrobial behavior of phage endolysin PlyP100 and its synergy with nisin to control Listeria monocytogenes in queso fresco. Food Microbiology, 72, 128-134.

Jánosi, S. Z., Szigeti, G., Klcsar, M., Kerényi, J., Laukó, T., Katona, F. & Huszenicza, G. (2001). Pathophysiology: Review of the microbiological, pathological, and clinical aspects of bovine mastitis caused by the alga Prototheca zopfii. Veterinary Quarterly, 23, (2), 58-61.

Klaenhammer, T. R. & Fitzgerald, G. F. (1994). Bacteriophages and bacteriophage resistance. In: Genetics and biotechnology of lactic acid bacteria. Dordrecht: Springer, 106-168.

Kwiatek, M., Parasion, S., Mizak, L., Gryko, R., Bartoszcze, M. & Kocik, J. (2012). Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Archives of Virology, 157, (2), 225-234.

León, M. & Bastías, R. (2015). Virulence reduction in bacteriophage resistant bacteria. Frontiers in Microbiology, 6, 343.

Leverentz, B., Conway, W. S., Camp, M., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R. & Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology, 69, (8), 4519-4526.

Li, L. & Zhang, Z. (2014). Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Molecular Biology Reports, 41, (9), 5829-5838.

Lin, D. M., Koskella, B. & Lin, H. C. (2017). Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8, (3), 162.

Matsuzaki, S., Rashel, M., Uchiyama, J., Tani, T., Fujieda, M. & Wakiguchi, H. (2005). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. Journal of Infection and Chemotherapy, 11, (5), 211-219.

Moreira, M. A., Silva Júnior, A., Lima, M. C. & Costa, S. L. (2019). Infectious Diseases in Dairy Cattle. In Raw Milk. Cambridge: Academic Press, 235-258.

Nicholas, R. A. J., Fox, L. K. & Lysnyansky, I. (2016). Mycoplasma mastitis in cattle: To cull or not to cull. The Veterinary Journal, 216, 142-147.

Oliveira, A., Sousa, J. C., Silva, A. C., Melo, L. D. R. & Sillankorva, S. (2018). Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model. Frontiers in Microbiology, 9, 1725.

Oliveira, A., Ribeiro, H. G., Silva, A. C., Silva, M. D., Sousa, J. C., Rodrigues, C. F., Melo, L. D. R., Henriques, A. F. & Sillankorva, S. (2017). Synergistic antimicrobial interaction between honey and phage against Escherichia coli biofilms. Frontiers in Microbiology, 8, 2407.

Othman, B. A., Askora, A. A., Awny, N. M. & Abo-Senna, A. S. M. (2008). Characterization of virulent bacteriophages for Streptomyces griseoflavus isolated from soil. Pakistan Journal of Biotechnology, 5, (1-2), 109-118.

Patel, S. R., Verma, A. K., Verma, V. C., Janga, M. R. & Nath, G. (2015). Bacteriophage therapy-looking back in to the future. The battle against microbial pathogens: basic science, technological advances and educational programs. Badajoz: Formatex Research Center. 284-294.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Porter, J., Anderson, J., Carter, L., Donjacour, E. & Paros, M. (2016). In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. Journal of Dairy Science, 99, (3), 2053-2062.

Ribeiro, K. V. G., Ribeiro, C., Dias, R. S., Cardoso, S. A., Paula, S. O., Zanuncio, J. C. & Oliveira, L. L. (2018). Bacteriophage isolated from sewage eliminates and prevents the establishment of Escherichia coli biofilm. Advanced Pharmaceutical Bulletin, 8, (1), 85.

Rossi, R. S., Amarante, A. F., Correia, L. B. N., Rossi, B. F., Rall, V. L. M. & Pantoja, J. C. F. (2018). Diagnostic accuracy of somaticell, California Mastitis Test, and microbiological examination of composite milk to detect Streptococcus agalactiae intramammary infections. Journal of Dairy Science, 101, (11), 10220-10229.

Ruegg, P. L. (2017). A 100-Year Review: Mastitis detection, management, and prevention. Journal of Dairy Science, 100, (12), 10381-10397.

Ruegg, P. L. (2018). Making antibiotic treatment decisions for clinical mastitis. Veterinary Clinics: Food Animal Practice, 34, (3), 413-425.

Ruegg, P. L. & Petersson-Wolfe, C. S. (2018). Mastitis in dairy cows. Veterinary Clinics: Food Animal Practice, 34,(3), 9,10.

Saglam, A. G., Sahin, M., Celik, E., Celebi, O., Akca, D. & Otlu, S. (2017). The role of staphylococci in subclinical mastitis of cows and lytic phage isolation against to Staphylococcus aureus. Veterinary World, 10, (12), 1481.

Said, M. B., Trabelsi, D., Achouri, F., Saad, M. B., Bousselmi, L. & Ghrabi, A. (2017). Application of bacteriophage and essential oil to monitor bacterial biofilm formation. In: Euro-Mediterranean Conference for Environmental Integration. Cham: Springer. 273-274.

Sarhan, W. A. & Azzazy, H. M. E. (2017). Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine, 12, (17), 2055-2067.

Silva, D. P., Gellen, L. F. A., Silva, T. S., Costa, J. L., Silva, A. L. L. & Scheidt, G. N. (2013). Resíduos de antibiótico em leite: prevalência, danos à aaúde e prejuízos na indústria de laticínios. Evidência-Ciência e Biotecnologia, 13, (2), 137-152.

Spanamberg, A., Sanches, E. M. C., Santurio, J. M., & Ferreiro, L. (2009). Mastite micótica em ruminantes causada por leveduras. Ciência Rural, 39, (1), 282-290.

Srednik, M. E., Tremblay, Y. D. N., Labrie, J., Archambault, M., Jacques, M., Cirelli, A. F. & Gentilini, E. R. (2017). Biofilm formation and antimicrobial resistance genes of coagulase-negative staphylococci isolated from cows with mastitis in Argentina. FEMS Microbiology Letters, 364, (8), fnx001.

Torres-Barceló, C. (2018). The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerging Microbes & Infections, 7, (1), 168.

Tremblay, Y. D. N., Caron, C., Blondeau, A., Messier, S. & Jacques, M. (2014). Biofilm formation by coagulase-negative staphylococci: impact on the efficacy of antimicrobials and disinfectants commonly used on dairy farms. Veterinary Microbiology, 172, (3-4), 511-518.

Viazis, S., Akhtar, M., Feirtag, J. & Diez-Gonzalez, F. (2011). Reduction of Escherichia coli O157: H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiology, 28, (1), 149-157.

Waldor, M. K., Friedman, D. I. & Adhya, S. L. (2005) Phages: their role in bacterial pathogenesis and biotechnology. Washington: ASM Press, 450.

Wang, I. N., Smith, D. L. & Young, R. (2000). Holins: the protein clocks of bacteriophage infections. Annual Reviews in Microbiology, 54, (1), 799-825.

Wang, C., Yang, J., Zhu, J., Lu, Y., Xue, Y. & Lu, Z. (2017). Effects of Salmonella bacteriophage, nisin and potassium sorbate and their combination on safety and shelf life of fresh chilled pork. Food Control, 73, 869-877.

Yamaguchi, T., Hayashi, T., Takami, H., Nakasone, K., Ohnishi, M., Nakayama, K., Yamada, S., Komatsuzawa, H. & Sugai, M. (2000). Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Molecular Microbiology, 38, (4), 694-705.

Young, R. Y. (1992). Bacteriophage lysis: mechanism and regulation. Microbiological Reviews, 56, (3), 430-481.

Zago, M., Orrù, L., Rossetti, L., Lamontanara, A., Fornasari, A. E., Bonvini, B., Meucci, A., Carminati, D., Cattivelli, L. & Giraffa, G. (2017). Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain. Food Microbiology, 66, 110-116.

Downloads

Published

22/09/2020

How to Cite

BARBOSA, L. N. .; ALMADA, A. F. B. de .; SCHMITZ JUNIOR, J. A.; VECHIO, M. A. D. .; BEZERRA , K. .; ESPOLADOR, G. F. .; SANTOS, M. C. dos .; MORETTO, L. de F. .; SANTOS, I. C. dos .; MARTINS, L. de A. .; GONÇALVES , D. D. . Bacteriophages’ action against mastitis-causing bactéria. Research, Society and Development, [S. l.], v. 9, n. 10, p. e1849108541, 2020. DOI: 10.33448/rsd-v9i10.8541. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8541. Acesso em: 2 jan. 2025.

Issue

Section

Review Article