Influence of different photoinitiators on the resistance of union in bovine enamel: an in vitro study

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8832

Keywords:

Dental enamel; Adhesives; Synthetic resins; Dental photoinitiators.

Abstract

To evaluate the action of photoinitiators on the microtensile resistance of adhesive systems and resins composed in bovine enamel. Forty dental fragments, with flat and smooth enamel surfaces, obtained from the coronary buccal face of healthy bovine incisors, were randomly assigned to 4 experimental groups (n = 10) according to the different adhesive systems and composite resins used: Group 1- Ambar APS + Vittra APS; Group 2- Ambar APS + Opallis; Group 3- Ambar + Vittra APS; Group 4- Ambar + Opallis. After composite restoration, the samples were sectioned to obtain toothpicks that were subjected to the microtensile test (1.0 mm/min). The data obtained were subjected to statistical analysis. The Kruskal-Wallis test revealed no significant differences between groups (p <0.05). Values ​​in MPa were: G1- 18.58 MPaa; G2 - 19.83 MPaa; G3- 19.87 MPaa; G4- 20.99 MPaa. The result of the Mann-Whitney test showed no significant differences due to the adhesive (Ambar Universal- 19.58 MPaa, Ambar APS Universal- 19.87 MPaa) and the composite resin used (Vittra APS- 19.52 MPAa, Opallis - 20.56 MPAa). The use of different photoinitiators in the composition of adhesive systems and restorative composites did not influence their adhesive resistance values ​​due to the standardization of the factors that influence their cure pattern.

References

Aguiar, T. R., Oliveira, M., Arrais, C. A. G., Ambrosano, G. M. B., Rueggeberg, F., & Giannini, M. (2015). The effect of photopolymerization on the degree of conversion, polymerization kinetic, biaxial flexure strength, and modulus of self-adhesive resin cements. J Prosth Dent, 113(2):128-34.

Albuquerque, P. P. A. C., Moreira, A. D. L., Moraes, R. R., Cavalcante, L. M., & Schneider, L. F. J. (2013). Color stability, conversion, water sorption and solubility of dental composites formulated with different photoinitiator systems. J Dent, 41(3), 67-72.

AlShaafi, M. M. (2017). Factors affecting polymerization of resin-based composites: A literature review. The Saudi Dental J, 29, 48-58.

Arikawa, H., Takahashi, H., Kanie, T., & Ban, S. (2009). Effect of various visible light photoinitiators on the polymerization and color of light-activated resins. Dent Mater, 28(4), 454-60.

Armstrong, S., Breschi, L., Özcan, M., Pfefferkorn, F., Ferrari, M., & Meerbeek, B. V. (2017). Academy of Dental Materials guidance on vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (µTBS) approach. Dent Mater, 33(2), 133-43.

Azad, E., Atai, M., Zandi, M., Shokrollahi, P., & Solhi, L. (2018). Structure-properties relationships in dental adhesives: Effect of initiator, matrix monomer structure, and nano-filler incorporation. Dent Mater, 3(9), 1263-1270.

Brandt, W. C., Schneider, L. F. J., Frollini, E., Correr-Sobrinho, L., & Sinhoreti, M. A. C. (2010). Effect of different photo-initiators and light curing units on degree of conversion of composites. Braz Oral Res, 24(3), 263-70.

Brandt, W. C., Tomaselli, L. C., Correr-Sobrinho, L., & Sinhoreti, M. A. C. (2011), Can phenyl-propanedione influence Knoop hardness, rate of polymerization and bond strength of resin composite restorations? J Dent, 39, 438-47.

Cadenaro, M., Antoniolli, F., Codan, B., Agee, K., Tay, F. R., Dorigo, E. S., Pashley, D. H., & Breschi, L. (2010). Influence of different initiators on the degree of conversion of experimental adhesive blends in relation to their hydrophilicity and solvent content. Dent Mater, 26(3), 288-294.

Cadenaro, M., Maravic, T., Comba, A., Mazzoni, A., Fanfoni, L., Hilton, T., Ferracane, J., & Breschi, L. (2019). The role of polymerization in adhesive dentistry. Dent Mater, 35(1), 1-22.

Cardoso, K. A. O. R. F., Zarpellon, D. C., Madruga, C. F. L., Rodrigues, J. A., & Arrais, C. A. G. (2017). Effects of radiant exposure values using second and third generation light curing units on the degree of conversion of a lucirin-based resin composite. J Appl Oral Sci, 25(2), 140-4.

Hass, V., Dobrovolski, M., Zander-Grande, C., Martins, G. C., Gordillo, L. A., Accorinte, M. L. R., Gomes, O. M. M., Loguercio, A. D., & Reis, A. (2013). Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives. Dent Mater, 29, 921-8.

Landuyt, K. L. V., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K, Lambrechts, P., & Meerbeek, B. V. (2007). Systematic review of chemical composition of contemporary dental adhesives. Biomat, 28, 3757-85.

Marshall, S. J., Bayne, S. C., Baier, R., Tomsia, A. P., & Marshall, G. W. (2010). A review of adhesion science. Dent Mater, 26(2), 11-16.

Miletic, V., Pongprueksa, P., Munck, J. D., Brooks, N. R., & Meerbeek, B. V. (2013). Monomer-to-polymer conversion and micro-tensile bond strength to dentine of experimental and commercial adhesives containing diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide or a camphorquinone/amine photo-initiator system. J Dent, 41, 918-26.

Pongprueksa, P., Munck, J. D., Barreto, B. C., & Van Meerbeek, B. (2017). Polymerization efficacy affects the long-term mini-interfacial fracture toughness. J Adhes Dent, 19(2), 157-67.

Rosa, W. L. O., Piva, E., & Silva, A. F. (2015). Bond strength of universal adhesives: A systematic review and meta-analysis. J Dent, 43(7), 765-76.

Rueggeberg, F. A., Giannini, M., Arrais, C. A. G., & Price, R. B. T. (2017). Light curing in dentistry and clinical implications: a literature review. Braz Oral Res, 31, 61.

Ruse, N. D., Smith, D. C., Torneck, C. D., & Titley, K. C. (1990). Preliminary surface analysis of etched, bleached, and normal bovine enamel. J Dent Res, 69(9), 1610-3.

Salles de Oliveira, D. C. R., Rocha, M. G., Correa, I. C., Correr, A. B., Ferracane, J. L., & Sinhoreti, M. A. C. (2016). The effect of combining photoinitiator systems on the color and curing profile of resin-based composites. Dent Mater, 32, 1209-17.

Santini, A., Gallegos, I. T., & Felix, C. M. (2013). Photoinitiators in Dentistry: A Review. Primary Dental Journal, 2(4), 30-3.

Segreto, D. R., Naufel, F. S, Brandt, W. C., Guiraldo, R. D., Correr-Sobrinho, L., & Sinhoreti, M. A. C. (2016). Influence of Photoinitiator and light-curing source on bond strength of experimental resin cements on dentin. Braz. Dent. J, 27(1), 83-9.

Schneider, L. F. J., Cavalcante, L. M., Prahl, S. A., Pfeifer, C. S., & Ferracane, J. L. (2012). Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyl-diphenyl-phosphine oxide. Dent Mater, 28, 392-7.

Shin, D. H., & Rawls, H. R. (2009). Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater, 25(8), 1030–8.

Swift Jr, E. J., Perdigão, J., & Heymann, H. O. (1995). Bonding to enamel and dentin: A briefy history and state of the art. Quintessence Int, 26(2), 95-110.

Szesz, A., Parreiras, S., Reis, A., & Loguercio, A. (2016). Selective enamel etching in cervical lesions for self-etch adhesives: A systematic review and meta-analysis. J Dent, 53, 1-11.

Yassen, G. H., Platt, J. A., & Hara, A. T. (2011). Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci, 53(3), 273-82.

Downloads

Published

08/10/2020

How to Cite

CAMPOS, P. R. B. de .; SERRANO, L. E. .; CÂMARA, J. V. F.; GREGORIO, R. A. C. D. L. .; RYTHOLZ, R. .; BASÍLIO, M. dos S. .; PIEROTE, J. J. A. .; GROISMAN, S.; BARRETO, S. C. .; PEREIRA, G. D. da S. . Influence of different photoinitiators on the resistance of union in bovine enamel: an in vitro study. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5639108832, 2020. DOI: 10.33448/rsd-v9i10.8832. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8832. Acesso em: 24 dec. 2024.

Issue

Section

Health Sciences