Synthesis and characterization of an experimental 3Y-TZP dental ceramic prepared by polymeric precursors method
DOI:
https://doi.org/10.33448/rsd-v9i10.9123Keywords:
Ceramics; 3Y-TZP; Chemical Synthesis; Thermogravimetry; X-ray Diffraction; Scanning electron microscopy.Abstract
The aim of the investigation was to synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via polymeric precursor method (PPM). The precursor solution was preheated at 350ºC for 3h, subsequently thermally treated at 500ºC for 3h and 800ºC for 6h. The obtained materials were analyzed by Thermogravimetry-Derivative Thermogravimetry (TG/DTG), Differential Thermal Analysis (DTA), powder X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Two commercially available Y-TZP ceramic systems were chosen for comparison. XRD analysis of the synthesized 3Y-TZP powders revealed the crystallization of the tetragonal phase, while both commercial systems showed the coexistence of the monoclinic and tetragonal phases. SEM analysis showed that the powders thermally treated at 800°C consist of agglomerated spherical nanoparticles. Morphology of commercial systems also revealed nanosized spherical particles. Results revealed that the PPM led to ceramics with structural and morphological properties comparable to commercially available reinforced dental ceramics.
References
Afrashtehfar, K. I., & Fabbro, M. Del. (2019). Clinical performance of zirconia implants : A meta-review. The Journal of Prosthetic Dentistry, 123(3), 419–426. https://doi.org/10.1016/j.prosdent.2019.05.017
Arata, A., Campos, T. M. B., Machado, J. P. B., Lazar, D. R. R., Ussui, V., Lima, N. B., & Tango, R. N. (2014). Quantitative phase analysis from X-ray diffraction in Y-TZP dental ceramics: A critical evaluation. Journal of Dentistry, 42(11), 1487–1494. https://doi.org/10.1016/j.jdent.2014.08.010
Bravo-Leon, A., Morikawa, Y., Kawahara, M., & Mayo, M. J. (2002). Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Materialia, 50(18), 4555–4562. https://doi.org/10.1016/S1359-6454(02)00283-5
Chevalier, J., & Gremillard, L. (2009). Ceramics for medical applications: A picture for the next 20 years. In Journal of the European Ceramic Society (Vol. 29, Issue 7, pp. 1245–1255). https://doi.org/10.1016/j.jeurceramsoc.2008.08.025
Chevalier, J. (2006). What future for zirconia as a biomaterial? Biomaterials, 27(4), 535–543. https://doi.org/10.1016/j.biomaterials.2005.07.034
Chevalier, J., Deville, S., Münch, E., Jullian, R., & Lair, F. (2004). Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials, 25(24), 5539–5545. https://doi.org/10.1016/j.biomaterials.2004.01.002
Cottom, B. A., & Mayo, M. J. (1996). Fracture toughness of nanocrystalline ZrO2-3mol% y2o3 determined by vickers indentation. Scripta Materialia, 34(5), 809–814. https://doi.org/10.1016/1359-6462(95)00587-0
Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3), 299–307. https://doi.org/10.1016/j.dental.2007.05.007
Díaz-Parralejo, A., Cuerda-Correa, E. M., Macías-García, A., Díaz-Díez, M. A., & Sánchez-González, J. (2011). Tailoring the properties of yttria-stabilized zirconia powders prepared by the sol-gel method for potential use in solid oxide fuel cells. Fuel Processing Technology, 92(2), 183–189. https://doi.org/10.1016/j.fuproc.2010.05.033
Fernandes, S. L., Gasparotto, G., Teixeira, G. F., Cebim, M. A., Longo, E., & Zaghete, M. A. (2018). Lithium lanthanum titanate perovskite ionic conductor: Influence of europium doping on structural and optical properties. Ceramics International, 44(17), 21578–21584. https://doi.org/10.1016/j.ceramint.2018.08.221
Garvie, R. C., Hannink, R. H., & Pascoe, R. (1975). Ceramic steel? Nature, 258(1), 703–704.
Gautam, C., Joyner, J., Gautam, A., Rao, J., & Vajtai, R. (2016). Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 45(48). https://doi.org/10.1039/c6dt03484e
Guazzato, M., Albakry, M., Ringer, S. P., & Swain, M. V. (2004). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials, 20(5), 449–456. https://doi.org/10.1016/j.dental.2003.05.002
Hayashi, H., Ueda, A., Suino, A., Hiro, K., & Hakuta, Y. (2009). Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system. Journal of Solid State Chemistry, 182(11), 2985–2990. https://doi.org/10.1016/j.jssc.2009.08.013
Kelly, J. R., & Denry, I. (2008). Stabilized zirconia as a structural ceramic: An overview. Dental Materials, 24(3), 289–298. https://doi.org/10.1016/j.dental.2007.05.005
Kim, H. (2020). E ff ect of A Rapid-Cooling Protocol on the Optical and Mechanical Properties of Dental Monolithic Zirconia. Materials, 13(1923). https://doi.org/10.3390/ma13081923
Kuo, C. W., Shen, Y. H., Wen, S. B., Lee, H. E., Hung, I. M., Huang, H. H., & Wang, M. C. (2011). Phase transformation kinetics of 3 mol% yttria partially stabilized zirconia (3Y-PSZ) nanopowders prepared by a non-isothermal process. Ceramics International, 37(1), 341–347. https://doi.org/10.1016/j.ceramint.2010.09.018
Lazar, D. R. R., Bottino, M. C., Özcan, M., Valandro, L. F., Amaral, R., Ussui, V., & Bressiani, A. H. A. (2008). Y-TZP ceramic processing from coprecipitated powders: A comparative study with three commercial dental ceramics. Dental Materials, 24(12), 1676–1685. https://doi.org/10.1016/j.dental.2008.04.002
Li, R. W. K., Chow, T. W., & Matinlinna, J. P. (2014). Ceramic dental biomaterials and CAD/CAM technology: State of the art. Journal of Prosthodontic Research, 58(4), 208–216. https://doi.org/10.1016/j.jpor.2014.07.003
Li, X., Qian, J., Xu, J., Sun, Y., & Liu, L. (2019). Synthesis and electrical properties of antimony–doped tin oxide–coated TiO 2 by polymeric precursor method. Materials Science in Semiconductor Processing, 98(March), 70–76. https://doi.org/10.1016/j.mssp.2019.03.024
Liang, X., Qiu, Y., Zhou, S., Hu, X., Yu, G., & Deng, X. (2008). Preparation and properties of dental zirconia ceramics. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 15(6), 764–768. https://doi.org/10.1016/S1005-8850(08)60284-4
Maritan, L., Nodari, L., Mazzoli, C., Milano, A., & Russo, U. (2006). Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Applied Clay Science, 31(1–2), 1–15. https://doi.org/10.1016/j.clay.2005.08.007
Miragaya, L. M., Guimarães, R. B., Souza, R. O. de A. e., Guimarães, J. G. A., & da Silva, E. M. (2017). Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 72, 14–21. https://doi.org/10.1016/j.jmbbm.2017.04.014
Miyazaki, T., Nakamura, T., Matsumura, H., Ban, S., & Kobayashi, T. (2013). Current status of zirconia restoration. Journal of Prosthodontic Research, 57(4), 236–261. https://doi.org/10.1016/j.jpor.2013.09.001
Muñoz-Tabares, J. A., Jiménez-Piqué, E., Reyes-Gasga, J., & Anglada, M. (2011). Microstructural changes in ground 3Y-TZP and their effect on mechanical properties. Acta Materialia, 59(17), 6670–6683. https://doi.org/10.1016/j.actamat.2011.07.024
Ojha, P. K., Rath, S. K., Chongdar, T. K., & Kulkarni, A. R. (2010). Nanocrystalline yttria stabilized zirconia by metal-PVA complexation. Ceramics International, 36(2), 561–566. https://doi.org/10.1016/j.ceramint.2009.09.035
Oliveira, A. P., & Torem, M. L. (2001). The influence of precipitation variables on zirconia powder synthesis. Powder Technology, 119(2–3), 181–193. https://doi.org/10.1016/S0032-5910(00)00422-8
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Retrieved from https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia- Pesquisa-Cientifica.pdf?sequence=1
Piconi, C., & Maccauro, G. (1999). Zirconia as a Dental Biomaterial. Biomaterials, 20, 1–25. https://doi.org/10.3390/ma8084978
Pieralli, S., Kohal, R. J., Jung, R. E., Vach, K., & Spies, B. C. (2017). Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. Journal of Dental Research, 96(1), 38–46. https://doi.org/10.1177/0022034516664043
Presenda, Á., Salvador, M. D., Peñaranda-Foix, F. L., Moreno, R., & Borrell, A. (2015). Effect of microwave sintering on microstructure and mechanical properties in Y-TZP materials used for dental applications. Ceramics International, 41(5), 7125–7132. https://doi.org/10.1016/j.ceramint.2015.02.025
Quinelato, A. L., Longo, E., Perazolli, L. A., & Varela, J. A. (2000). Effect of ceria content on the sintering of ZrO2 based ceramics synthesized from a polymeric precursor. Journal of the European Ceramic Society, 20(8), 1077–1084. https://doi.org/10.1016/S0955-2219(99)00269-1
Retamal, C., Lagos, M., Moshtaghioun, B. M., Cumbrera, F. L., Domínguez-Rodríguez, A., & Gómez-García, D. (2016). A new approach to the grain-size dependent transition of stress exponents in yttria tetragonal zirconia polycrystals. the theoretical limit for superplasticity in ceramics. Ceramics International, 42(4), 4918–4923. https://doi.org/10.1016/j.ceramint.2015.12.005
Sangeetha, A., Chikkahanumantharayappa, & Nagabhushana, B. M. (2019). Comparative study of photoluminescence of single and mixed phase ZrTiO4 prepared by solution combustion and polymeric precursor method. Journal of Molecular Structure, 1179, 126–131. https://doi.org/10.1016/j.molstruc.2018.10.059
Shi, L., Chen, W., Zhou, X., Zhao, F., & Li, Y. (2014). Pr-doped 3Y-TZP nanopowders for colored dental restorations: Mechanochemical processing, chromaticity and cytotoxicity. Ceramics International, 40(6), 8569–8574. https://doi.org/10.1016/j.ceramint.2014.01.071
Silva, B. F., Maestrelli, S. C., Damasceno, L. H. S., Costa, R. B., Guarda, A. L., & Roveri, C. D. (2019). Ceramic characterization of raw material with a high content of organic matter reduced by composting. Ceramica, 65, 34–39. https://doi.org/10.1590/0366-6913201965S12602
Soubelet, C. G., Albano, M. P., & Conconi, M. S. (2018). Sintering, microstructure and hardness of Y-TZP- 64S bioglass ceramics. Ceramics International, 44(5), 4868–4874. https://doi.org/10.1016/j.ceramint.2017.12.076
Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A., & Hämmerlet, C. H. F. (2012). The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clinical Oral Investigations, 17(1), 269–274. https://doi.org/10.1007/s00784-012-0692-6
Studart, A. R., Filser, F., Kocher, P., & Gauckler, L. J. (2007). Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dental Materials, 23(1), 106–114. https://doi.org/10.1016/j.dental.2005.12.008
Tong, H., Tanaka, C. B., Kaizer, M. R., & Zhang, Y. (2016). Characterization of three commercial Y-TZP ceramics produced for their High-Translucency, High-Strength and High-Surface Area. Ceramics International, 42(1), 1077–1085. https://doi.org/10.1016/j.ceramint.2015.09.033
Uz, M. M., Karakaş Aydınoğlu, A., & Hazar Yoruç, A. B. (2020). Effects of binder and compression strength on molding parameters of dental ceramic blocks. Ceramics International, 46(8), 10186–10193. https://doi.org/10.1016/j.ceramint.2020.01.010
Xue, M., Liu, S., Wang, X., & Jiang, K. (2020). High fracture toughness of 3Y-TZP ceramic over a wide sintering range. Materials Chemistry and Physics, 244(122693). https://doi.org/10.1016/j.matchemphys.2020.122693
Zhang, K., He, R., Ding, G., Feng, C., Song, W., & Fang, D. (2020). Digital light processing of 3Y-TZP strengthened ZrO2 ceramics. Materials Science and Engineering A, 774(138768). https://doi.org/10.1016/j.msea.2019.138768
Zhang, Yu, & Lawn, B. R. (2019). Evaluating dental zirconia. Dental Materials, 35(1), 15–23. https://doi.org/10.1016/j.dental.2018.08.291
Zhang, Y., & Lawn, B. R. (2018). Novel Zirconia Materials in Dentistry. Journal of Dental Research, 97(2), 140–147. https://doi.org/10.1177/0022034517737483
Zsigmondy, R., & Scherrer, P. (1912). Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch, 277(1916), 387–409. https://doi.org/10.1007/978-3-662-33915-2_7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Fabíola Stahlke Prado; Tânia Cristina Simões; Alejandra Hortencia Miranda González
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.