Síntese e caracterização de uma cerâmica dentária experimental 3Y-TZP preparada pelo método de precursores poliméricos

Autores

DOI:

https://doi.org/10.33448/rsd-v9i10.9123

Palavras-chave:

Cerâmica; 3Y-TZP; Síntese Química; Termogravimetria; Difração de raios X; Microscopia eletrônica de varredura.

Resumo

O objetivo da pesquisa foi sintetizar pós de zircônia estabilizada com 3 mol% de ítria (3Y-TZP) por meio do método de precursores poliméricos (MPP). A solução precursora foi pré-aquecida a 350ºC por 3h, posteriormente tratada termicamente a 500ºC por 3h e 800ºC por 6h. Os materiais obtidos foram analisados por Termogravimetria – Termogravimetria Derivada (TG / DTG), Análise Térmica Diferencial (DTA), Difração de raios-X (DRX) e Microscopia Eletrônica de Varredura (MEV). Dois sistemas cerâmicos Y-TZP comercialmente disponíveis foram escolhidos para comparação. A análise de DRX dos pós sintetizados de 3Y-TZP revelou a cristalização da fase tetragonal, enquanto ambos os sistemas comerciais mostraram a coexistência das fases monoclínica e tetragonal. A análise de MEV mostrou que os pós tratados termicamente a 800ºC consistem em nanopartículas esféricas aglomeradas. A morfologia dos sistemas comerciais também revelou partículas esféricas nanométricas. Os resultados revelaram que o MPP produziu cerâmicas com propriedades estruturais e morfológicas comparáveis às cerâmicas odontológicas reforçadas disponíveis comercialmente.

Referências

Afrashtehfar, K. I., & Fabbro, M. Del. (2019). Clinical performance of zirconia implants : A meta-review. The Journal of Prosthetic Dentistry, 123(3), 419–426. https://doi.org/10.1016/j.prosdent.2019.05.017

Arata, A., Campos, T. M. B., Machado, J. P. B., Lazar, D. R. R., Ussui, V., Lima, N. B., & Tango, R. N. (2014). Quantitative phase analysis from X-ray diffraction in Y-TZP dental ceramics: A critical evaluation. Journal of Dentistry, 42(11), 1487–1494. https://doi.org/10.1016/j.jdent.2014.08.010

Bravo-Leon, A., Morikawa, Y., Kawahara, M., & Mayo, M. J. (2002). Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Materialia, 50(18), 4555–4562. https://doi.org/10.1016/S1359-6454(02)00283-5

Chevalier, J., & Gremillard, L. (2009). Ceramics for medical applications: A picture for the next 20 years. In Journal of the European Ceramic Society (Vol. 29, Issue 7, pp. 1245–1255). https://doi.org/10.1016/j.jeurceramsoc.2008.08.025

Chevalier, J. (2006). What future for zirconia as a biomaterial? Biomaterials, 27(4), 535–543. https://doi.org/10.1016/j.biomaterials.2005.07.034

Chevalier, J., Deville, S., Münch, E., Jullian, R., & Lair, F. (2004). Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials, 25(24), 5539–5545. https://doi.org/10.1016/j.biomaterials.2004.01.002

Cottom, B. A., & Mayo, M. J. (1996). Fracture toughness of nanocrystalline ZrO2-3mol% y2o3 determined by vickers indentation. Scripta Materialia, 34(5), 809–814. https://doi.org/10.1016/1359-6462(95)00587-0

Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3), 299–307. https://doi.org/10.1016/j.dental.2007.05.007

Díaz-Parralejo, A., Cuerda-Correa, E. M., Macías-García, A., Díaz-Díez, M. A., & Sánchez-González, J. (2011). Tailoring the properties of yttria-stabilized zirconia powders prepared by the sol-gel method for potential use in solid oxide fuel cells. Fuel Processing Technology, 92(2), 183–189. https://doi.org/10.1016/j.fuproc.2010.05.033

Fernandes, S. L., Gasparotto, G., Teixeira, G. F., Cebim, M. A., Longo, E., & Zaghete, M. A. (2018). Lithium lanthanum titanate perovskite ionic conductor: Influence of europium doping on structural and optical properties. Ceramics International, 44(17), 21578–21584. https://doi.org/10.1016/j.ceramint.2018.08.221

Garvie, R. C., Hannink, R. H., & Pascoe, R. (1975). Ceramic steel? Nature, 258(1), 703–704.

Gautam, C., Joyner, J., Gautam, A., Rao, J., & Vajtai, R. (2016). Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 45(48). https://doi.org/10.1039/c6dt03484e

Guazzato, M., Albakry, M., Ringer, S. P., & Swain, M. V. (2004). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials, 20(5), 449–456. https://doi.org/10.1016/j.dental.2003.05.002

Hayashi, H., Ueda, A., Suino, A., Hiro, K., & Hakuta, Y. (2009). Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system. Journal of Solid State Chemistry, 182(11), 2985–2990. https://doi.org/10.1016/j.jssc.2009.08.013

Kelly, J. R., & Denry, I. (2008). Stabilized zirconia as a structural ceramic: An overview. Dental Materials, 24(3), 289–298. https://doi.org/10.1016/j.dental.2007.05.005

Kim, H. (2020). E ff ect of A Rapid-Cooling Protocol on the Optical and Mechanical Properties of Dental Monolithic Zirconia. Materials, 13(1923). https://doi.org/10.3390/ma13081923

Kuo, C. W., Shen, Y. H., Wen, S. B., Lee, H. E., Hung, I. M., Huang, H. H., & Wang, M. C. (2011). Phase transformation kinetics of 3 mol% yttria partially stabilized zirconia (3Y-PSZ) nanopowders prepared by a non-isothermal process. Ceramics International, 37(1), 341–347. https://doi.org/10.1016/j.ceramint.2010.09.018

Lazar, D. R. R., Bottino, M. C., Özcan, M., Valandro, L. F., Amaral, R., Ussui, V., & Bressiani, A. H. A. (2008). Y-TZP ceramic processing from coprecipitated powders: A comparative study with three commercial dental ceramics. Dental Materials, 24(12), 1676–1685. https://doi.org/10.1016/j.dental.2008.04.002

Li, R. W. K., Chow, T. W., & Matinlinna, J. P. (2014). Ceramic dental biomaterials and CAD/CAM technology: State of the art. Journal of Prosthodontic Research, 58(4), 208–216. https://doi.org/10.1016/j.jpor.2014.07.003

Li, X., Qian, J., Xu, J., Sun, Y., & Liu, L. (2019). Synthesis and electrical properties of antimony–doped tin oxide–coated TiO 2 by polymeric precursor method. Materials Science in Semiconductor Processing, 98(March), 70–76. https://doi.org/10.1016/j.mssp.2019.03.024

Liang, X., Qiu, Y., Zhou, S., Hu, X., Yu, G., & Deng, X. (2008). Preparation and properties of dental zirconia ceramics. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 15(6), 764–768. https://doi.org/10.1016/S1005-8850(08)60284-4

Maritan, L., Nodari, L., Mazzoli, C., Milano, A., & Russo, U. (2006). Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Applied Clay Science, 31(1–2), 1–15. https://doi.org/10.1016/j.clay.2005.08.007

Miragaya, L. M., Guimarães, R. B., Souza, R. O. de A. e., Guimarães, J. G. A., & da Silva, E. M. (2017). Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 72, 14–21. https://doi.org/10.1016/j.jmbbm.2017.04.014

Miyazaki, T., Nakamura, T., Matsumura, H., Ban, S., & Kobayashi, T. (2013). Current status of zirconia restoration. Journal of Prosthodontic Research, 57(4), 236–261. https://doi.org/10.1016/j.jpor.2013.09.001

Muñoz-Tabares, J. A., Jiménez-Piqué, E., Reyes-Gasga, J., & Anglada, M. (2011). Microstructural changes in ground 3Y-TZP and their effect on mechanical properties. Acta Materialia, 59(17), 6670–6683. https://doi.org/10.1016/j.actamat.2011.07.024

Ojha, P. K., Rath, S. K., Chongdar, T. K., & Kulkarni, A. R. (2010). Nanocrystalline yttria stabilized zirconia by metal-PVA complexation. Ceramics International, 36(2), 561–566. https://doi.org/10.1016/j.ceramint.2009.09.035

Oliveira, A. P., & Torem, M. L. (2001). The influence of precipitation variables on zirconia powder synthesis. Powder Technology, 119(2–3), 181–193. https://doi.org/10.1016/S0032-5910(00)00422-8

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Retrieved from https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia- Pesquisa-Cientifica.pdf?sequence=1

Piconi, C., & Maccauro, G. (1999). Zirconia as a Dental Biomaterial. Biomaterials, 20, 1–25. https://doi.org/10.3390/ma8084978

Pieralli, S., Kohal, R. J., Jung, R. E., Vach, K., & Spies, B. C. (2017). Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. Journal of Dental Research, 96(1), 38–46. https://doi.org/10.1177/0022034516664043

Presenda, Á., Salvador, M. D., Peñaranda-Foix, F. L., Moreno, R., & Borrell, A. (2015). Effect of microwave sintering on microstructure and mechanical properties in Y-TZP materials used for dental applications. Ceramics International, 41(5), 7125–7132. https://doi.org/10.1016/j.ceramint.2015.02.025

Quinelato, A. L., Longo, E., Perazolli, L. A., & Varela, J. A. (2000). Effect of ceria content on the sintering of ZrO2 based ceramics synthesized from a polymeric precursor. Journal of the European Ceramic Society, 20(8), 1077–1084. https://doi.org/10.1016/S0955-2219(99)00269-1

Retamal, C., Lagos, M., Moshtaghioun, B. M., Cumbrera, F. L., Domínguez-Rodríguez, A., & Gómez-García, D. (2016). A new approach to the grain-size dependent transition of stress exponents in yttria tetragonal zirconia polycrystals. the theoretical limit for superplasticity in ceramics. Ceramics International, 42(4), 4918–4923. https://doi.org/10.1016/j.ceramint.2015.12.005

Sangeetha, A., Chikkahanumantharayappa, & Nagabhushana, B. M. (2019). Comparative study of photoluminescence of single and mixed phase ZrTiO4 prepared by solution combustion and polymeric precursor method. Journal of Molecular Structure, 1179, 126–131. https://doi.org/10.1016/j.molstruc.2018.10.059

Shi, L., Chen, W., Zhou, X., Zhao, F., & Li, Y. (2014). Pr-doped 3Y-TZP nanopowders for colored dental restorations: Mechanochemical processing, chromaticity and cytotoxicity. Ceramics International, 40(6), 8569–8574. https://doi.org/10.1016/j.ceramint.2014.01.071

Silva, B. F., Maestrelli, S. C., Damasceno, L. H. S., Costa, R. B., Guarda, A. L., & Roveri, C. D. (2019). Ceramic characterization of raw material with a high content of organic matter reduced by composting. Ceramica, 65, 34–39. https://doi.org/10.1590/0366-6913201965S12602

Soubelet, C. G., Albano, M. P., & Conconi, M. S. (2018). Sintering, microstructure and hardness of Y-TZP- 64S bioglass ceramics. Ceramics International, 44(5), 4868–4874. https://doi.org/10.1016/j.ceramint.2017.12.076

Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A., & Hämmerlet, C. H. F. (2012). The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clinical Oral Investigations, 17(1), 269–274. https://doi.org/10.1007/s00784-012-0692-6

Studart, A. R., Filser, F., Kocher, P., & Gauckler, L. J. (2007). Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dental Materials, 23(1), 106–114. https://doi.org/10.1016/j.dental.2005.12.008

Tong, H., Tanaka, C. B., Kaizer, M. R., & Zhang, Y. (2016). Characterization of three commercial Y-TZP ceramics produced for their High-Translucency, High-Strength and High-Surface Area. Ceramics International, 42(1), 1077–1085. https://doi.org/10.1016/j.ceramint.2015.09.033

Uz, M. M., Karakaş Aydınoğlu, A., & Hazar Yoruç, A. B. (2020). Effects of binder and compression strength on molding parameters of dental ceramic blocks. Ceramics International, 46(8), 10186–10193. https://doi.org/10.1016/j.ceramint.2020.01.010

Xue, M., Liu, S., Wang, X., & Jiang, K. (2020). High fracture toughness of 3Y-TZP ceramic over a wide sintering range. Materials Chemistry and Physics, 244(122693). https://doi.org/10.1016/j.matchemphys.2020.122693

Zhang, K., He, R., Ding, G., Feng, C., Song, W., & Fang, D. (2020). Digital light processing of 3Y-TZP strengthened ZrO2 ceramics. Materials Science and Engineering A, 774(138768). https://doi.org/10.1016/j.msea.2019.138768

Zhang, Yu, & Lawn, B. R. (2019). Evaluating dental zirconia. Dental Materials, 35(1), 15–23. https://doi.org/10.1016/j.dental.2018.08.291

Zhang, Y., & Lawn, B. R. (2018). Novel Zirconia Materials in Dentistry. Journal of Dental Research, 97(2), 140–147. https://doi.org/10.1177/0022034517737483

Zsigmondy, R., & Scherrer, P. (1912). Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch, 277(1916), 387–409. https://doi.org/10.1007/978-3-662-33915-2_7

Downloads

Publicado

18/10/2020

Como Citar

PRADO, F. S. .; SIMÕES, T. C.; GONZÁLEZ, A. H. M. . Síntese e caracterização de uma cerâmica dentária experimental 3Y-TZP preparada pelo método de precursores poliméricos. Research, Society and Development, [S. l.], v. 9, n. 10, p. e7919109123, 2020. DOI: 10.33448/rsd-v9i10.9123. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9123. Acesso em: 23 nov. 2024.

Edição

Seção

Ciências da Saúde