Bioreduction of α,β-unsaturated carbonyl compounds by Lasiodiplodia pseudotheobromae, endophytic fungus from Morinda citrifolia (RUBIACEAE)

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.9419

Keywords:

Bioreduction; Endophytic fungi; Biotransformation; Lasiodiplodia.

Abstract

Biotransformations are reactions carried out by microorganisms that lead to changes in the structures of organic compounds, among the biotransformations there are bioreductions. Bioreductions are of great interest to the pharmaceutical and food industries, as they almost always lead to the formation of enantiomerically pure compounds. Thus, this work aimed to verify the ability of the fungus Lasiodiplodia pseudotheobromae in bioreduce α,β-unsaturated carbonyl compounds. Compounds (3E)-4-(2-methoxy-phenyl)-but-3-en-2-one (1), (1E, 4E)-1,5-diphenyl-pent-1,4-dien-3-one (2) and (1E, 4E)-1,5-bis-(2-methoxy-phenyl)-penta-1,4-dien-3-one (3) were used as substrates. The reactions were carried out on an orbital shaker for 8 days at room temperature. The products formed were characterized by analytical thin layer chromatography (ATLC), high performance liquid chromatography (HPLC) and hydrogen nuclear magnetic resonance (1H NMR). For all products formed was observed reduction in double bonds C=C and C=O leading to the formation of the respective alcohols. This is the first report of biotransformation reactions using the fungus Lasiodiplodia pseudotheobromae.

References

Adetunji, C. O.  Oloke, J. K. (2013). Effect of Wild and Mutant Strain of Lasiodiplodia Pseudotheobromae Mass Produced on Rice Bran as a Potential Bioherbicide Agents for Weeds under Solid state Fermentation. J App Biol Biotech, 1(2), 18-23. DOI: 10.7324/JABB.2013.1204

Adetunji, C. O., Adejumo, I. O., Oloke, J. K.  Akpor, O. B. (2018). Production of Phytotoxic Metabolites with Bioherbicidal Activities from Lasiodiplodia pseudotheobromae Produced on Different Agricultural Wastes Using Solid-State Fermentation. Iran J Sci Technol Trans Sci, 42(2), 1163-1175. https://doi.org/10.1007/s40995-017-0369-8

Adetunji, C., Kumar, J. O. A., Swaranjit, S.  Akpor, B. (2017). Synergetic effect of rhamnolipid from Pseudomonas aeruginosa C1501 and phytotoxic metabolite from Lasiodiplodia pseudotheobromae C1136 on Amaranthus hybridus L. and Echinochloa crus-galli weeds. Environ Sci Pollut Res, 24, 13700-13709. https://doi.org/10.1007/s11356-017-8983-8

Albuquerque, P. M. (2007). Utilização de Saccharomyces cerevisiae na redução de substratos carbonílicos. Tese de Doutorado, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil.

Boffi, A., Cacchi, S., Ceci, P., Cirilli, R., Fabrizi, G., Prastaro, A., Niembro, S., Shafir, A.  Vallribera, A. (2011). The Heck Reaction of Allylic Alcohols Catalyzed by Palladium Nanoparticles in Water: Chemoenzymatic Synthesis of (R)-(-)-Rhododendrol. ChemCatChem, 3(2), 347-353. https://doi.org/10.1002/cctc.201000260

Cao H., Chen, X., Jassbi, A. R.  Xiao, J. (2015). Microbial biotransformation of bioactive flavonoids. Biotechnol Adv, 33(1), 214-223. doi: 10.1016/j.biotechadv.2014.10.012

Gallardo, Y. M., Soriano, M. P. C.  Santos, L. S. (2013). Stereoselective bioreduction of β-carboline imines through cell-free extracts from earthworms (Eisenia foetida). Tetrahedron: Asymmetry, 24(8), 440-443. https://doi.org/10.1016/j.tetasy.2013.03.003

Hu, Z. G., Liu, J., Zeng, P. L.  Dong, Z. B. (2004). Synthesis of , '-bis(substituted benzylidene)ketones catalysed by a SOCl2/EtOH reagent. J Chem Res, 55-56. https://doi.org/10.3184/030823404323000792

Jesus, I. S., Nogueira, F. B.  Fonseca, A. M. (2013). Redução de compostos carbonílicos: os talos de mamoeiro (Carica papaya) como reagente biocatalisador. Scientia Plena, 9(7), 077215.

Kose, O.  Saito, S. (2010). Cross-coupling reaction of alcohols for carbon–carbon bond formation using pincer-type NHC/palladium catalysts. Org Biomol Chem, 8(4), 896-900. DOI:10.1039/b914618k

Labes, J. R.  Wendhausen, R. (2008). Seleção de microorganismos com ação de compostos com ação sobre compostos carbonilados gerando álcoois quirais. Dynamis, 1, 73-79. http://dx.doi.org/10.7867/1982-4866.2008v14n1p73-79

Liu, J. H.  Yu, B. Y. (2010). Biotransformation of bioactive natural products for pharmaceutical lead compounds. Curr Org Chem, 14(14), 1400-1406. DOI:10.2174/138527210791616786

Machado, A. R, Pinho, D. B.  Perreira, O. L. (2014). Phylogeny, identification and pathogenicity of the Botryosphaeriaceae associated with collar and root rot of the biofuel plant Jatropha curcas in Brazil, with a description of new species of Lasiodiplodia. Fungal Diversity, 67, 231-247. https://doi.org/10.1007/s13225-013-0274-1

Maciel, C. G., Muniz, M. F. B., Rolim, J. M., Michelon, R. M. D. N., Paletto, T.  Rabuske, J. E. (2017). Uso da microbiolização contra Lasiodiplodia theobromae em sementes de pinus spp. Floresta, 47(1), 121-128. http://dx.doi.org/10.5380/rf.v47i1.44018

Martins, L. R.  Takahashi, J. A. (2010). Rearrangement and oxidation of β-amyrin promoted by growing cells of Lecanicillium muscarinium. Nat Prod Res, 24, 767-774. https://doi.org/10.1080/14786410903262865

McConville, M., Saidi, O., Blacker, J.  Xiao, J. (2009). Regioselective Heck Vinylation of Electron-Rich Olefins with Vinyl Halides: Is the Neutral Pathway in Operation? J Org Chem, 74(7), 2692-2698. https://doi.org/10.1021/jo802781m

Nunes, F. M., Oliveira, M. C. F., Arriaga, A. M., Lemos, T. L. G., Andrade-Neto, M., Mattos, M. C., Mafezoli, J., Viana, F. M. P., Ferreira, V. M., Rodrigues-Filho, E.  Ferreira, A. G. (2008). A new eremophilane - type sesquiterpene from the phytopatogen fungus Lasiodiplodia theobromae (Sphaeropsidaceae). J Braz Chem Soc, 19(3), 478-482. http://dx.doi.org/10.1590/S0103-50532008000300015

Perkins, C., Siddique, S., Puri, M.  Demain, A. L. (2016). Biotechnological applications of microbial bioconversions. Crit Rev Biotechnol, 36(6), 1050-1065. doi:10.3109/07388551.2015.1083943

Takahashi, J. A., Lima, G. S., Santos, G. F., Lyra, F. H., Silva-Hughes, A. F.  Gonçalves, F. A. G. (2017). Fungos Filamentosos e Química: Velhos Conhecidos, Novos Aliados. Rev Virtual Quim, 9(6), 2351-2382. DOI: 10.21577/1984-6835.20170141

Vasconcelos, D. H. P., Mafezoli, J., Uchôa, P. K. S., Saraiva, N. N., Lima, M. A. S., Silva-Júnior, J. N., Barbosa, F. G., Mattos, M. C., Oliveira, M. C. F., Lima, C. S.  Pessoa, M. N. G. (2015). Biotransformation of the Diterpene Ent-18,19-dihydroxytrachylobane by Rhizopus stolonifer. J Braz Chem Soc, 26(5), 1043-1047. https://doi.org/10.5935/0103-5053.20150070

Wei, W., Jiang, N., Mei, Y. N., Chu, Y. L., Ge, H. M., Song, Y. C., NG, S. W.  Tan, R. X. (2014). An antibacterial metabolite from Lasiodiplodia pseudotheobromae F2. Phytochemistry, 100, 103-109. https://doi.org/10.1016/j.phytochem.2014.01.003

Yamakoshi, H., Ohori, H., Kudo, C., Sato, A., Kanoh, N., Ishioka, C., Shibata, H.  Iwabuchi, Y. (2010). Structure–activity relationship of C5 curcuminoids and synthesis of their molecular probes thereof. Bioorg Med Chem, 18(3), 1083-1092. doi: 10.1016/j.bmc.2009.12.045

Zampieri, D. S., Paula, B. R. S., Zampieri, L. A., Vale, J. A., Rodrigues, J. A. R.  Moran, P. J. S. (2013). Enhancements of enantio and diastereoselectivities in reduction of (Z)-3-halo-4-phenyl-3-buten-2-one mediated by microorganisms in ionic liquid/water biphasic system. J Mol Catal B- Enzym, 85-86, 61-64. https://doi.org/10.1016/j.molcatb.2012.08.005

Downloads

Published

29/10/2020

How to Cite

SILVA, M. C. da; ANJOS, M. L. dos; OLIVEIRA, L. C. de; MARINHO, P. S. B.; NAKASONE, A. K. .; SILVA, S. Y. S.; BITENCOURT, H. R.; SILVA, S. da C.; MARINHO, A. M. do R. . Bioreduction of α,β-unsaturated carbonyl compounds by Lasiodiplodia pseudotheobromae, endophytic fungus from Morinda citrifolia (RUBIACEAE). Research, Society and Development, [S. l.], v. 9, n. 10, p. e9739109419, 2020. DOI: 10.33448/rsd-v9i10.9419. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9419. Acesso em: 23 apr. 2024.

Issue

Section

Exact and Earth Sciences