Extraction of proteins from animal tissues by the SDS 2% protocol

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.9453

Keywords:

Protocol; Innovation; Protein extraction.

Abstract

Under extensive territorial conditions in Brazil there are many needs of resources to conduct research. Many Federal and State Universities rely on resources to invest in technologies for analysis in biological systems. Innovations that allow reducing the costs in the execution of the research, makes them practical at the field level and responsive in the realization of the research. For this purpose, a 2% sodium dodecyl sulfate (SDS) protein extraction protocol was proposed in order to reduce the amount of solvents organic scans used, without harming the viability of proteins, the feasibility of other proteomic analysis techniques: SDS-PAGE and Mass Spectrometry, precisely due to the reduction of the accumulation of waste produced by cell lysis. Considering SDS as a component in the SDS-PAGE process, this does not cause accumulation of residue by organic solvents external to the technique, besides cheapening costs and reducing the toxicological effect in the laboratory. The results obtained showed that this protocol proves to be viable for protein extraction from animal tissues, proven by the SDS-PAGE technique that allowed a clear visualization of the fragments of the extracted proteins and the absence of protein traces from excess cell lysis.

Author Biography

Tauane Catilza Lopes Fernandes, Universidade Federal do Ceará

Departamento de Zootecnia 

References

Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1-2), 248–254. doi:10.1006/abio.1976.9999

Doong, R., Wu, Y. W., & Lei, W. G. (1998). Surfactant enhanced remediation of cadmium contaminated soils. Water Science and Technology, 37(8), 65-71.doi:10.1016/S0273-1223(98)00235-2

Doyle, C. (2010). Powerful choices podcast: dispelling cancer myths. Acesso em 15 out. 2020, em http://www.cancer.org

Ewing, G. W. Métodos Instrumentais de análise química (1997). São Paulo, Brasil: Ed. Edgar Blucher Ltda.

Franzetti, A., Tamburini, E. & Banat, I. M. (2010). Applications of biological surface active compounds in remediation technologies. Advances in Experimental Medicine and Biology, 672, 121-134. doi:10.1007/978-1-4419-5979-9_9

Fu, R.H., Wang, Y.C., Liu, S.P., Shih, T.R., Lin, H.L., Chein, Y.M., Sung, J.H., Lu, C.H.,Wei, J.R., Wang, Z.W., Huang, S.J., Tsai, C.H., Shyu, W.C. & Lin, S.Z. (2014). Decellularization and recellularization Technologies in tissue engineering. Cell Transplantation, 23(4-5), 621-630. doi:10.3727/096368914X678382

Gallagher, S. R. (2006). One-Dimensional SDS Gel Electrophoresis of Proteins. Current Protocols in Molecular Biology,75(1), 1-38. doi:10.1002/0471142727.mb1002as75

Johann, S., Seiler, T., Tiso, T., Bluhm, K., Blank, L. M. & Hollert, H. (2016). Mechanism specific and whole – organism ecotoxicity of mono-rhamnolipids. Science of the Total Environment,155-163. doi: 10.1016/j.scitotenv.2016.01.066

Lewis, M. A. (1990). Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicology and Environmental Safety, 20(2), 123-140. doi: 10.1016/0147-6513(90)90052-7

Pereira, A.S., Shitsuka, D.M., Pereira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria - RS, Brasil: NTE e-book.

Roig, M.G., Pedraz, M.A., Sanchez, J.M., Huska, J. & Tóth, D. (1998). Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: II. Comamonas terrigena N3H. Journal of Molecular Catalysis B: Enzymatic, 4(5), 271-281.doi: 10.1016/S1381-1177(98)00006-X

Sanromán, M. A., Iglesias, O., Rosales, E. & Pazos, M. (2016). Electrokinetic Remediation and Hybrid Technologies for the Treatment of Organic Pollutants. In: ALBERGARIA, José Tomaz; Nows, Henri P.A. Soil remediation: Applications and New Technologies (pp.1-20). New York: CRC Press

Scopes, R. K. (1982). Protein Purification.doi:10.1007/978-1-4757-1770-9

Scopes, R. K., & Smith, J. A. (2006). Analysis of Proteins. Current Protocols in Molecular Biology, 76(1), 1-22. doi:10.1002/0471142727.mb1000s76

Sidim, T. (2016). Some physicochemical properties of octylphenol ethoxylate nonionics (Triton x-100, Triton x-114 and Triton x-405) and the temperature effect on this properties. Trakya University Journal National Science, 13(2), 101-116. Acesso em 15 out. 2020, em https://dergipark.org.tr/en/pub/trkjnat/issue/25385/267891

Sperotto, R. A. (2014). Protocolos e métodos de análise em laboratórios de biotecnologia Protocolos e métodos de análise em laboratórios de biotecnologia agroalimentar e de saúde humana. Lajeado – SC, Brasil: Editora da Univates.

Published

27/10/2020

How to Cite

FERNANDES, T. C. L. .; FERNANDES, S. S. L. Extraction of proteins from animal tissues by the SDS 2% protocol. Research, Society and Development, [S. l.], v. 9, n. 10, p. e9379109453, 2020. DOI: 10.33448/rsd-v9i10.9453. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9453. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences