Application of low-pass filters in digital elevation models for evaluation of the altimetric difference between Pantanais do Negro e Nhecolândia

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9519

Keywords:

Free geotechnology; Units for conservation of nature; Altimetry.

Abstract

The SRTM synthetic aperture interferometric radar data have great potential for studies involving altimetry, since, in addition to being freely available on the internet, they are also geocoded, facilitating their treatment in Geographic Information System. However, the SRTM data has some usage limitations, including the Canopy Effect, a consequence of the model considering the top of the vegetation as a relief feature. Another limitation, no less important, especially for the use of these data in flat areas, refers to the vertical precision of these data, since in the area of this study, located in the Pantanal, a difference of only one meter has an important significance. The present work aims to evaluate the altimetry data from SRTM, TOPODATA and GLS data; to analyze the vertical accuracy, by comparing the data of these sensors with the altitude data of the geodesic landmarks of the Brazilian Institute of Geography and Statistics; and apply Moving Average Low Pass Filter to correct the "Canopy Effect" of SRTM data. The study area chosen to carry out all these analyzes is included between the Pantanais do Negro and Nhecolância. The applied methodology was developed in a free platform GIS environment: GRASS-GIS, Quantum GIS and SPRING. The SRTM data used allowed us to assess the altimetric difference between the Pantanal do Negro and Nhecolândia. Filters applied to SRTM data substantially reduced the main features associated with the canopy effect of vegetation.

References

Abdon, M. M., Silva, J. S. V., Pott, A., Pott, V. J., Silva, M. P., Mengatto Junior, E.A. (2009). Cobertura vegetal do Parque Estadual Pantanal do Rio Negro (PEPRN) – MS. In: Simpósio De Geotecnologias No Pantanal, 2, Corumbá, 2009. Anais. São José dos Campos: Embrapa Informática Agropecuária/INPE. 674-84.

Brasil. (1988). Constituição da República Federativa do Brasil. São Paulo: Ed. Revista dos Tribunais. BRASIL.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roht, L., Sseal, D., Shaffer, S., Shimada, J., Umland, J., Wener, M.; Oskin, M., Burbank, D., Alsdorf, D. (2009). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, 1-33.

Grass Development Team. (2010). Geographic Resources Analysis Support System (GRASS) Software, Version 6.4.1. Open Source Geospatial Foundation. Recuperado de http://grass.osgeo.org.

Higa, L. T., Paranhos Filho, A. C., Torres, T. G., Salles, A. T. (2006). Avaliação da precisão vertical do modelo SRTM para a bacia do rio Paraguai, no Estado de Mato Grosso do Sul. In: 1º Simpósio De Geotecnologias Do Pantanal. Campo Grande. Anais. São José dos Campos, SP:INPE. 834-840.

Instituto Brasileiro de geografia e Estatística – IBGE. 2010. Banco de Dados Geodésicos. Recuperado de http://www.ibge.gov.br/home/geociencias/geodesia/bdgpesq_googlem aps.php#tabela_dado).

Instituto Nacional de Pesquisas Espaciais – INPE. (2006). SPRING – Sistema de Processamento de Informações Georeferenciadas. Recuperado de http://ww w.dpi.inpe.br/spring.

Instituto nacional de Pesquisas Espaciais – INPE. (2011). Banco de Dados Geomorfométricos do Brasil. Recuperado de http://www.dsr.inpe.br/topodata/data/geotiff/.

Ludwig, R., & Schneider, P. (2006). Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. Journal of Photogrammetry & Remote Sensing, 60, 339 – 358.

Marini, L. R., Marcato Junior, J., Ramos, A. P. M., Paranhos Filho, A. C., BarroS, W. M., Higa, L. T. (2017). Análise da acurácia Altimétrica dos Modelos Digitais de superfície SRTM, Aster e Topodata e Aplicação na Representação do Pantanal da Nhecolândia. Anuário do Instituto de Geociências, 40(3), 48 - 54.

Instituto de Meio Ambiente de Mato Grosso do Sul – IMASUL. (2008). Resumo Executivo do Plano de Manejo do Parque Estadual do Pantanal do Rio Negro. IMASUL, Campo Grande. 68 p.

QGIS Development Team. (2018). Geographic Information System. Open Source Geospatial Foundation Project. Recuperado de http://qgis.osgeo.org.

Rodriguez, E., Morris, C. S., Belz, E. A. (2006). Global Assessment of the SRTM Performance. Photogrammetric Engineering & Remote Sensing, 72(3), 249 - 260.

Pereira, A. P., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE, 119p. Recuperado de https://www.u fsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf.

Valeriano, M. M. (2008). TOPODATA: Guia de Utilização de Dados Geomorfométricos Locais. São José dos Campos, SP. Recuperado de http://www.dsr.inpe.br/to podata/data/guia_enx.pdf.

Zyl, J. J. V. (2001). The Shuttle Radar Topography Mission (SRTM): A Breakthrough in Remote Sensing of Topography. Acta Astronautica, 48, 559 - 565.

Published

08/11/2020

How to Cite

Copatti, A. ., Mendes, D. ., Oliveira, A. P. G. ., Dalmas, F. B., & Paranhos Filho, A. C. . (2020). Application of low-pass filters in digital elevation models for evaluation of the altimetric difference between Pantanais do Negro e Nhecolândia. Research, Society and Development, 9(11), e1729119519. https://doi.org/10.33448/rsd-v9i11.9519

Issue

Section

Exact and Earth Sciences