In silico analysis of the supposed absence of therapeutic synergism in the association of hydroxychloroquine and azithromycin in COVID-19

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9712

Keywords:

ACE2; Azithromycin; CD147; COVID-19; Hydroxychloroquine; Molecular Docking Simulation.

Abstract

A associação terapêutica entre hidroxicloroquina (HCQ) e azitromicina (AZI) foi considerada como terapia para COVID-19, no entanto, não está claro se ocorre uma ação sinérgica. Para melhor compreender esta associação terapêutica, este estudo teve como objetivo analisar a interação do HCQ e AZI com receptores humanos in silico.. A análise foi realizada por simulação de docking molecular. As interações químicas do HCQ e AZI com prováveis ​​receptores no organismo humano, ACE2 e CD147, foram analisadas no software AutoDock Vina e os resultados analisados ​​no software PyMol. Os conformadores HCQ-ACE2 e AZI-CD147 foram formados com energia de afinidade significativa de -7,0 Kcal / mol e -7,8 Kcal / mol, respectivamente. Apesar da interação entre HCQ e ACE2 poder prevenir a invasão das células pelo vírus, essa interação pode levar a efeitos colaterais graves. Por sua vez, a interação AZI-CD147 também pode atuar impedindo a entrada do vírus nas células. Além disso, de acordo com o in silicodados, a interação AZI-CD147 ocorreria de forma mais eficaz, o que leva a crer que a ação terapêutica do HCQ no COVID-19 não é tão relevante quanto a ação do AZI e não haveria sinergismo.

References

Beigelman, A. et al. (2015). Randomized trial to evaluate azithromycin’s effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis. Journal of Allergy and Clinical Immunology, 135(5), 1171-1178. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0091674914014249

Beigelman, A. et al. (2010). Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respiratory research, 11(90), 1-11. Retrieved from http://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-11-90

Bourgonje, A. R. et al (2020). Angiotensin‐converting enzyme‐2 (ACE2), SARS‐CoV‐2 and pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of Pathology, 251(3), 228-248. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/path.5471

Breuer, O., & Schultz, A. (2018). Side effects of medications used to treat childhood interstitial lung disease. Paediatric Respiratory Reviews, 28, 68-79. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1526054218300460

Brufsky, A. (2020). Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic. Journal of Medical Virology, 92(7), 770-775. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25887

Cancio, M. et al (2020). Emerging Trends in COVID-19 Treatment: Learning from Inflammatory Conditions Associated with Cellular Therapies. Cytotherapy. Retrieved from https://doi.org/10.1016/j.jcyt.2020.04.100

CD147, a New Target of SARS-CoV-2 Invasion - CUSABIO. (2020). Retrieved from https://www.cusabio.com/c-20985.html

Chen, Z. et al (2005). Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. The Journal of infectious diseases, 191(5), 755-760. Retrieved from https://academic.oup.com/jid/article/191/5/755/1238824

Chico, R. M., & Chandramohan, D. (2011). Azithromycin plus chloroquine: combination therapy for protection against malaria and sexually transmitted infections in pregnancy. Expert opinion on drug metabolism & toxicology, 7(9), 1153-1167. Retrieved from https://pubmed.ncbi.nlm.nih.gov/21736423

Chorin, E. et al (2020). The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nature Medicine, 26(6), 807-808. Retrieved from http://www.nature.com/articles/s41591-020-0888-2

Cooper, R. G., & Magwere, T. (2008). Chloroquine: novel uses & manifestations. Indian Journal of Medical Research, 127(4), 305-316. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18577785/

Coronavirus Update (Live): 43,099,164 Cases and 1,156,596 Deaths from COVID-19 Virus Pandemic – Worldometer. (2020). Retrieved from https://www.worldometers.info/coronavirus/

Crosnier, C. et al (2011). Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature, 480(7378), 534-537. Retrieved from http://www.nature.com/articles/nature10606

de Souza Oliveira, E., Matos, M. F., Cavalcante, O. S. S., & de Morais, A. C. L. N. (2020). Off label use of antimalarials in covid-19 patients. Research, Society and Development, 9(6), 168963517. Retrieved from https://rsdjournal.org/index.php/rsd/article/view/3517

Epidemiology Working Group for NCIP Epidemic Response. (2020). The epidemiological characteristics of na outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi, 41(2), 145-151. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/32064853

Equi, A., Balfour-Lynn, I. M., Bush, A., & Rosenthal, M. (2002). Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. The Lancet, 360(9338), 978-984. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0140673602110816

García, L. F. (2020). Immune response, inflammation, and the clinical spectrum of COVID-19. Frontiers in immunology, 11, 4-8. Retrieved from https://www.frontiersin.org/article/10.3389/fimmu.2020.01441/full

Gautret, P. et al (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents, 105949. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0924857920300996

Gautret, P. et al (2020). Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel medicine and infectious disease, 101663. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1477893920301319

Gielen, V., Johnston, S. L., & Edwards, M. R. (2010). Azithromycin induces anti-viral responses in bronchial epithelial cells. European Respiratory Journal, 36(3), 646-654. Retrieved from http://erj.ersjournals.com/cgi/doi/10.1183/09031936.00095809

Jain, A., & Doyle, D. J. (2020). Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Medicine, 46, 1494-1495. Retrieved from http://link.springer.com/10.1007/s00134-020-06083-6

Kim, J. Y., Kim, W. J., Kim, H., Suk, K., & Lee, W. H. (2009). The stimulation of CD147 induces MMP-9 expression through ERK and NF-κB in macrophages: implication for atherosclerosis. Immune network, 9(3), 90-97. Retrieved from https://immunenetwork.org/DOIx.php?id=10.4110/in.2009.9.3.90

Kuo, C. H., Lee, M. S., Kuo, H. F., Lin, Y. C., & Hung, C. H. (2019). Azithromycin suppresses Th1-and Th2-related chemokines IP-10/MDC in human monocytic cell line. Journal of Microbiology, Immunology and Infection, 52(6), 872-879. Retrieved from https://doi.org/10.1016/j.jmii.2019.10.001

Lima, C. M. A. D. O. (2020). Information about the new coronavirus disease (COVID-19). Radiologia Brasileira, 53(2), V-VI. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000200001&tlng=en

Liu, J. et al (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery, 6(1), 1-4. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0924857920300996

Marmor, M. F., Kellner, U., Lai, T. Y., Melles, R. B., & Mieler, W. F. (2016). Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 123(6), 1386-1394. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0161642010012091

Morris GM, Lim-Wilby M. Molecular Docking. In: Methods in Molecular Biology [Internet]. 2008. p. 365–82. Retrieved from http://link.springer.com/10.1007/978-1-59745-177-2_19

Perlman, S. (2020). Another decade, another coronavirus. The New England Journal of Medicine, 382, 760-762. Retrieved from https://www.nejm.org/doi/metrics/10.1056/NEJMe2001126

PyMol. (2017). The PyMol Molecular Graphics System, Version 2.0. Retrieved from https://PyMol.org/2/

Vellano, P. O., & Paiva, M. J. M. (2020). O uso de antimicrobiano na COVID-19 e as infecções: o que sabemos. Research, Society and Development, 9(9), 1–18. Retrieved from https://rsdjournal.org/index.php/rsd/article/view/7245

Raschka, S. (2014). Molecular docking, estimating free energies of binding, and AutoDock’s semi‐empirical force field. Retrieved from https://sebastianraschka.com/Articles/2014_autodock_energycomps.html

Roberts, W. C., & High, S. T. (1999). The heart in systemic lupus erythematosus. Current problems in cardiology, 24(1), 1-56. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0146280699900191

Roncon, L., Zuin, M., Rigatelli, G., & Zuliani, G. (2020). Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. Journal of Clinical Virology, 104354. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1386653220300962

Rosenberg, E. S. et al (2020). Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. Jama, 323(24), 2493-2502. Retrieved from https://jamanetwork.com/journals/jama/fullarticle/2766117

Shityakov, S., & Förster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and applications in bioinformatics and chemistry: AABC, 7, 23-36. Retrieved from http://www.dovepress.com/in-silico-predictive-model-to-determine-vector-mediated-transport-prop-peer-reviewed-article-AABC

Shukla, A. M., Archibald, L. K., Shukla, A. W., Mehta, H. J., & Cherabuddi, K. (2020). Chloroquine and hydroxychloroquine in the context of COVID-19. Drugs in Context, 9, 1-8. Retrieved from https://drugsincontext.com/chloroquine-and-hydroxychloroquine-in-the-context-of-covid-19

Silhol, F., Sarlon, G., Deharo, J. C., & Vaïsse, B. (2020). Downregulation of ACE2 induces overstimulation of the renin–angiotensin system in COVID-19: should we block the renin–angiotensin system?. Hypertension Research, 43, 854-856. Retrieved from http://www.nature.com/articles/s41440-020-0476-3

South, A. M., Diz, D. I., & Chappell, M. C. (2020). COVID-19, ACE2, and the cardiovascular consequences. American Journal of Physiology-Heart and Circulatory Physiology. Retrieved from https://journals.physiology.org/doi/10.1152/ajpheart.00217.2020

Sprague, H. B. (1946). The effects of malaria on the heart. American heart journal, 31(4), 426-430. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/0002870346904243

Tran, D. H. et al(2019). Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A (H1N1) pdm09 virus infection by interfering with virus internalization process. The Journal of antibiotics, 72(10), 759-768. Retrieved from http://www.nature.com/articles/s41429-019-0204-x

Trott, O. & Olson, A. J. Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Comput. Chem, 31(2), 455-461. Retrieved from http://doi.wiley.com/10.1002/jcc.21334

Ulrich, H., & Pillat, M. M. (2020). CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports, 16, 434-440. Retrieved from http://link.springer.com/10.1007/s12015-020-09976-7

Vellano, P. O., & Paiva, M. J. M. (2020). O uso de antimicrobiano na COVID-19 e as infecções: o que sabemos. Research, Society and Development, 9(9), 1–18. Retrieved from https://rsdjournal.org/index.php/rsd/article/view/7245

Wang, K. et al (2020). SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. Retrieved from https://www.biorxiv.org/content/10.1101/2020.03.14.988345v1.full

WHO announces COVID-19 outbreak a pandemic. (2020). Retrieved from https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic

Wilson, D. W. et al (2015). Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC biology, 13(1), 52. Retrieved from https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-015-0162-0

Xiao, L., Sakagami, H., & Miwa, N. (2020). ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel?. Viruses, 12(5), 491. Retrieved from https://www.mdpi.com/1999-4915/12/5/491

Zhou, F. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 395, 1054-1062. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0140673620305663

Zimmermann, P., Ziesenitz, V. C., Curtis, N., & Ritz, N. (2018). The immunomodulatory effects of macrolides—a systematic review of the underlying mechanisms. Frontiers in immunology, 9(302), 1-14. Retrieved from http://journal.frontiersin.org/article/10.3389/fimmu.2018.00302/full

Published

12/11/2020

How to Cite

FERNANDES, B.; PINTO, L. G.; SILVA, Ériky F. G.; MARCUSSI , A. D. F. .; GROTO, A. D.; TEIXEIRA, K. N. . In silico analysis of the supposed absence of therapeutic synergism in the association of hydroxychloroquine and azithromycin in COVID-19. Research, Society and Development, [S. l.], v. 9, n. 11, p. e2249119712, 2020. DOI: 10.33448/rsd-v9i11.9712. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9712. Acesso em: 8 jan. 2025.

Issue

Section

Health Sciences