Análisis in silico de la supuesta ausencia de sinergismo terapéutico en la asociación de hidroxicloroquina y azitromicina en COVID-19
DOI:
https://doi.org/10.33448/rsd-v9i11.9712Palabras clave:
ACE2; Azitromicina; CD147; COVID-19; Hidroxicloroquina; Simulación de Acoplamiento Molecular.Resumen
La asociación terapéutica entre hidroxicloroquina (HCQ) y azitromicina (AZI) se ha considerado como terapia para COVID-19, sin embargo, no está claro si se produce una acción sinérgica. Para entender mejor esta asociación terapéutica, este estudio tenía como objetivo analizar la interacción de HCQ y AZI con los receptores humanos in silico. El análisis se realizó por la simulación de acoplamiento molecular. Las interacciones químicas de HCQ y AZI con probables receptores en el organismo humano, ACE2 y CD147 fueron analizadas por el software AutoDock Vina y los resultados fueron analizados en el software PyMol. Se formaron confórmeros HCQ-ACE2 y AZI-CD147 con una energía de afinidad significativa de -7,0 Kcal/mol y -7,8 Kcal/mol, respectivamente. A pesar de que la interacción entre HCQ y ACE2 puede prevenir la invasión de las células por virus, esta interacción puede dar lugar a efectos secundarios graves. A su vez, la interacción AZI-CD147 también puede actuar para evitar que el virus entre en las células. Además, de acuerdo con los datos in silico, la interacción AZI-CD147 ocurriría de manera más efectiva, lo que lleva a pensar que la acción terapéutica de HCQ en COVID-19 no es tan relevante como la acción de AZI y no habría sinergismo.
Citas
Beigelman, A. et al. (2015). Randomized trial to evaluate azithromycin’s effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis. Journal of Allergy and Clinical Immunology, 135(5), 1171-1178. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0091674914014249
Beigelman, A. et al. (2010). Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respiratory research, 11(90), 1-11. Retrieved from http://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-11-90
Bourgonje, A. R. et al (2020). Angiotensin‐converting enzyme‐2 (ACE2), SARS‐CoV‐2 and pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of Pathology, 251(3), 228-248. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/path.5471
Breuer, O., & Schultz, A. (2018). Side effects of medications used to treat childhood interstitial lung disease. Paediatric Respiratory Reviews, 28, 68-79. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1526054218300460
Brufsky, A. (2020). Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic. Journal of Medical Virology, 92(7), 770-775. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25887
Cancio, M. et al (2020). Emerging Trends in COVID-19 Treatment: Learning from Inflammatory Conditions Associated with Cellular Therapies. Cytotherapy. Retrieved from https://doi.org/10.1016/j.jcyt.2020.04.100
CD147, a New Target of SARS-CoV-2 Invasion - CUSABIO. (2020). Retrieved from https://www.cusabio.com/c-20985.html
Chen, Z. et al (2005). Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. The Journal of infectious diseases, 191(5), 755-760. Retrieved from https://academic.oup.com/jid/article/191/5/755/1238824
Chico, R. M., & Chandramohan, D. (2011). Azithromycin plus chloroquine: combination therapy for protection against malaria and sexually transmitted infections in pregnancy. Expert opinion on drug metabolism & toxicology, 7(9), 1153-1167. Retrieved from https://pubmed.ncbi.nlm.nih.gov/21736423
Chorin, E. et al (2020). The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nature Medicine, 26(6), 807-808. Retrieved from http://www.nature.com/articles/s41591-020-0888-2
Cooper, R. G., & Magwere, T. (2008). Chloroquine: novel uses & manifestations. Indian Journal of Medical Research, 127(4), 305-316. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18577785/
Coronavirus Update (Live): 43,099,164 Cases and 1,156,596 Deaths from COVID-19 Virus Pandemic – Worldometer. (2020). Retrieved from https://www.worldometers.info/coronavirus/
Crosnier, C. et al (2011). Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature, 480(7378), 534-537. Retrieved from http://www.nature.com/articles/nature10606
de Souza Oliveira, E., Matos, M. F., Cavalcante, O. S. S., & de Morais, A. C. L. N. (2020). Off label use of antimalarials in covid-19 patients. Research, Society and Development, 9(6), 168963517. Retrieved from https://rsdjournal.org/index.php/rsd/article/view/3517
Epidemiology Working Group for NCIP Epidemic Response. (2020). The epidemiological characteristics of na outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi, 41(2), 145-151. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/32064853
Equi, A., Balfour-Lynn, I. M., Bush, A., & Rosenthal, M. (2002). Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. The Lancet, 360(9338), 978-984. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0140673602110816
García, L. F. (2020). Immune response, inflammation, and the clinical spectrum of COVID-19. Frontiers in immunology, 11, 4-8. Retrieved from https://www.frontiersin.org/article/10.3389/fimmu.2020.01441/full
Gautret, P. et al (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents, 105949. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0924857920300996
Gautret, P. et al (2020). Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel medicine and infectious disease, 101663. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1477893920301319
Gielen, V., Johnston, S. L., & Edwards, M. R. (2010). Azithromycin induces anti-viral responses in bronchial epithelial cells. European Respiratory Journal, 36(3), 646-654. Retrieved from http://erj.ersjournals.com/cgi/doi/10.1183/09031936.00095809
Jain, A., & Doyle, D. J. (2020). Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Medicine, 46, 1494-1495. Retrieved from http://link.springer.com/10.1007/s00134-020-06083-6
Kim, J. Y., Kim, W. J., Kim, H., Suk, K., & Lee, W. H. (2009). The stimulation of CD147 induces MMP-9 expression through ERK and NF-κB in macrophages: implication for atherosclerosis. Immune network, 9(3), 90-97. Retrieved from https://immunenetwork.org/DOIx.php?id=10.4110/in.2009.9.3.90
Kuo, C. H., Lee, M. S., Kuo, H. F., Lin, Y. C., & Hung, C. H. (2019). Azithromycin suppresses Th1-and Th2-related chemokines IP-10/MDC in human monocytic cell line. Journal of Microbiology, Immunology and Infection, 52(6), 872-879. Retrieved from https://doi.org/10.1016/j.jmii.2019.10.001
Lima, C. M. A. D. O. (2020). Information about the new coronavirus disease (COVID-19). Radiologia Brasileira, 53(2), V-VI. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000200001&tlng=en
Liu, J. et al (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery, 6(1), 1-4. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0924857920300996
Marmor, M. F., Kellner, U., Lai, T. Y., Melles, R. B., & Mieler, W. F. (2016). Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 123(6), 1386-1394. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0161642010012091
Morris GM, Lim-Wilby M. Molecular Docking. In: Methods in Molecular Biology [Internet]. 2008. p. 365–82. Retrieved from http://link.springer.com/10.1007/978-1-59745-177-2_19
Perlman, S. (2020). Another decade, another coronavirus. The New England Journal of Medicine, 382, 760-762. Retrieved from https://www.nejm.org/doi/metrics/10.1056/NEJMe2001126
PyMol. (2017). The PyMol Molecular Graphics System, Version 2.0. Retrieved from https://PyMol.org/2/
Vellano, P. O., & Paiva, M. J. M. (2020). O uso de antimicrobiano na COVID-19 e as infecções: o que sabemos. Research, Society and Development, 9(9), 1–18. Retrieved from https://rsdjournal.org/index.php/rsd/article/view/7245
Raschka, S. (2014). Molecular docking, estimating free energies of binding, and AutoDock’s semi‐empirical force field. Retrieved from https://sebastianraschka.com/Articles/2014_autodock_energycomps.html
Roberts, W. C., & High, S. T. (1999). The heart in systemic lupus erythematosus. Current problems in cardiology, 24(1), 1-56. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0146280699900191
Roncon, L., Zuin, M., Rigatelli, G., & Zuliani, G. (2020). Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. Journal of Clinical Virology, 104354. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1386653220300962
Rosenberg, E. S. et al (2020). Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. Jama, 323(24), 2493-2502. Retrieved from https://jamanetwork.com/journals/jama/fullarticle/2766117
Shityakov, S., & Förster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and applications in bioinformatics and chemistry: AABC, 7, 23-36. Retrieved from http://www.dovepress.com/in-silico-predictive-model-to-determine-vector-mediated-transport-prop-peer-reviewed-article-AABC
Shukla, A. M., Archibald, L. K., Shukla, A. W., Mehta, H. J., & Cherabuddi, K. (2020). Chloroquine and hydroxychloroquine in the context of COVID-19. Drugs in Context, 9, 1-8. Retrieved from https://drugsincontext.com/chloroquine-and-hydroxychloroquine-in-the-context-of-covid-19
Silhol, F., Sarlon, G., Deharo, J. C., & Vaïsse, B. (2020). Downregulation of ACE2 induces overstimulation of the renin–angiotensin system in COVID-19: should we block the renin–angiotensin system?. Hypertension Research, 43, 854-856. Retrieved from http://www.nature.com/articles/s41440-020-0476-3
South, A. M., Diz, D. I., & Chappell, M. C. (2020). COVID-19, ACE2, and the cardiovascular consequences. American Journal of Physiology-Heart and Circulatory Physiology. Retrieved from https://journals.physiology.org/doi/10.1152/ajpheart.00217.2020
Sprague, H. B. (1946). The effects of malaria on the heart. American heart journal, 31(4), 426-430. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/0002870346904243
Tran, D. H. et al(2019). Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A (H1N1) pdm09 virus infection by interfering with virus internalization process. The Journal of antibiotics, 72(10), 759-768. Retrieved from http://www.nature.com/articles/s41429-019-0204-x
Trott, O. & Olson, A. J. Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Comput. Chem, 31(2), 455-461. Retrieved from http://doi.wiley.com/10.1002/jcc.21334
Ulrich, H., & Pillat, M. M. (2020). CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports, 16, 434-440. Retrieved from http://link.springer.com/10.1007/s12015-020-09976-7
Vellano, P. O., & Paiva, M. J. M. (2020). O uso de antimicrobiano na COVID-19 e as infecções: o que sabemos. Research, Society and Development, 9(9), 1–18. Retrieved from https://rsdjournal.org/index.php/rsd/article/view/7245
Wang, K. et al (2020). SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. Retrieved from https://www.biorxiv.org/content/10.1101/2020.03.14.988345v1.full
WHO announces COVID-19 outbreak a pandemic. (2020). Retrieved from https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic
Wilson, D. W. et al (2015). Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC biology, 13(1), 52. Retrieved from https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-015-0162-0
Xiao, L., Sakagami, H., & Miwa, N. (2020). ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel?. Viruses, 12(5), 491. Retrieved from https://www.mdpi.com/1999-4915/12/5/491
Zhou, F. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 395, 1054-1062. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0140673620305663
Zimmermann, P., Ziesenitz, V. C., Curtis, N., & Ritz, N. (2018). The immunomodulatory effects of macrolides—a systematic review of the underlying mechanisms. Frontiers in immunology, 9(302), 1-14. Retrieved from http://journal.frontiersin.org/article/10.3389/fimmu.2018.00302/full
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Bruna Fernandes; Luan Gabriel Pinto; Ériky Fernandes Guimarães Silva; Angélica De Fátima Marcussi ; Anderson Dillmann Groto; Kádima Nayara Teixeira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.